Name: \qquad

Pledged: \qquad
Check here if you are handing in the Class Survey Form: \qquad

Rhodes College
Math 115: Applied Calculus
Final Exam
Spring, 2008

Problem	Points	Score
1	20	
2	15	
3	15	
4	20	
5	10	
6	10	
7	10	
Total	100	

Note: SHOW ALL WORK. Answers with no support will receive no credit, even if the answer is correct. May the force be with you.

Have you taken a calculus class in the past? \qquad
If you have, what class, where, and when?

1. (20 pts) Find the derivative of each of the following functions.
a. (5 pts) $f(t)=\frac{2 t^{3}+3}{t^{2}+2 t}$ (Use the quotient rule or equivalent).
b. (5 pts) $F(x)=\left(\ln x-x^{5}\right)(3 \sqrt{x}+x)$
c. (5 pts) $S(x)=e^{\sin x+\cos x}$
d. (5 pts) $T(x)=\frac{1}{\sqrt{x}}+3 \sqrt[3]{x}$
2. (15 pts) Let

$$
f(x, y)=3 x^{2}+5 y^{2}-12 x-5 y
$$

a. (5 pts) Find the partial derivative of $f(x, y)$ with respect to x.
b. (5 pts) Find the partial derivative of $f(x, y)$ with respect to y.
c. (5 pts) Locate all critical points in the domain of $f(x, y)$.
3. (15 pts) Consider the function $f(x)=2 x^{3} e^{x}$.
a. (4 pts) What is the derivative of $f(x)$?
b. (4 pts) For what values of x is $f(x)$ increasing?
c. (7 pts) Find all local maxima and minima of $f(x)$.
4. (20 pts) Compute each definite or indefinite integral.
a. (5 pts) $\int_{0}^{\pi} \cos \left(\frac{x}{4}\right) d x$
b. (5 pts) $\int \frac{3}{x} d x$
c. (5 pts) $\int e^{2 x}+4 x d x$
d. $(5 \mathrm{pts}) \int_{0}^{3} x^{2}+x^{5} d x$
5. (10 pts) Determine the derivative of $f(x)=2 x^{2}-1$ directly from the (limit) definition of the derivative (i.e. the " 3 -Step Method").
6. (10 pts) Suppose the derivative of a function $F(x)$ is given by $f(x)=2^{x}+7$.
a. (5 pts) Use a Right Riemann Sum with $n=4$ to approximate how much $F(x)$ increases between $x=0$ and $x=4$.
b. (5 pts) Use a Midpoint Riemann Sum with $n=4$ to approximate how much $F(x)$ increases between $x=0$ and $x=4$
7. (10 pts) Compute the double integral.

$$
\int_{2}^{4}\left(\int_{0}^{2} x^{2} y+y^{2} x d y\right) d x
$$

