Name:_____

Pledged:_____

Check here if you are handing in the Class Survey Form:_____

Rhodes College Math 115: Applied Calculus Final Exam Spring, 2008

Problem	Points	Score
1	20	
2	15	
3	15	
4	20	
5	10	
6	10	
7	10	
Total	100	

Note: **SHOW ALL WORK.** Answers with no support will receive no credit, even if the answer is correct. May the force be with you.

Have you taken a calculus class in the past? _____

If you have, what class, where, and when?

1. (20 pts) Find the derivative of each of the following functions.

a. (5 pts)
$$f(t) = \frac{2t^3+3}{t^2+2t}$$
 (Use the quotient rule or equivalent).

b. (5 pts)
$$F(x) = (\ln x - x^5)(3\sqrt{x} + x)$$

c. (5 pts)
$$S(x) = e^{\sin x + \cos x}$$

d. (5 pts)
$$T(x) = \frac{1}{\sqrt{x}} + 3\sqrt[3]{x}$$

2. (15 pts) Let

$$f(x,y) = 3x^2 + 5y^2 - 12x - 5y$$

a. (5 pts) Find the partial derivative of f(x, y) with respect to x.

b. (5 pts) Find the partial derivative of f(x, y) with respect to y.

c. (5 pts) Locate all critical points in the domain of f(x, y).

3. (15 pts) Consider the function $f(x) = 2x^3 e^x$. a. (4 pts) What is the derivative of f(x)?

b. (4 pts) For what values of x is f(x) increasing?

c. (7 pts) Find all local maxima and minima of f(x).

4. (20 pts) Compute each definite or indefinite integral.

a. (5 pts)
$$\int_{0}^{\pi} \cos\left(\frac{x}{4}\right) dx$$

b. (5 pts)
$$\int \frac{3}{x} dx$$

c. (5 pts)
$$\int e^{2x} + 4x \, dx$$

d. (5 pts)
$$\int_{0}^{3} x^{2} + x^{5} dx$$

5. (10 pts) Determine the derivative of $f(x) = 2x^2 - 1$ directly from the (limit) definition of the derivative (i.e. the "3-Step Method").

6. (10 pts) Suppose the derivative of a function F(x) is given by $f(x) = 2^x + 7$. **a.** (5 pts) Use a Right Riemann Sum with n = 4 to approximate how much F(x) increases between x = 0 and x = 4.

b. (5 pts) Use a Midpoint Riemann Sum with n = 4 to approximate how much F(x) increases between x = 0 and x = 4

7. (10 pts) Compute the double integral.

$$\int_{2}^{4} \left(\int_{0}^{2} x^2 y + y^2 x \, dy \right) dx$$