
Module 4:

Areas under curves and Anti -derivatives

Problem 1: Velocity from Acceleration.

Problem 2: Mass from Concentration, in the

outlet pipe

Problem 3: Mass from Concentration, in the

settlement tank



In this module we will see how to calculate total accumulations of quantities
from the rate of accumulation. This includes calculating total amounts from
densities and concentrations. This type of calculation can also be used to find
the area with a curved boundary. The formal mathematical techniques we
develope here will be studied in Module 5.
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Schedule

Date Lecture Assignment

Wed 29th Oct Problem 1: Speed from
acceleration

None

Fri 31th Oct Finding anti-derivatives

Homework 1:
Sec 6.1: 1, 2∗, 3, 4∗, 13, 16∗,
37, 40∗

Sec 8.3: 35, 36∗, 39, 40∗

Fri 7th Nov
Areas under curves

Homework 2:
Exercise on page 9

Mon 10th Nov
Problem 2: Finding total
mass flowing into the settle-
ment tank

Homework 3:
Exercise on page 14

Wed 12th Nov Problem 3: Finding total
mass in a settlement tank

Homework 4:
Exercise on page 19

Mon 24th Nov Present posters of Projects
in MSC



1 Problem 1

1.1 Statement

The most critical stage of a 100m race is as the athlete accelerates out of the
blocks. The athlete will be able to maintain the speed they manage to reach
in this phase. Below are the values of an athlete’s acceleration in the first 0.8
seconds of a practice run. What is the athlete’s speed 0.8 seconds into the run?

Time (sec) Acceleration (m/s2)
0 20.4

0.1 20.3
0.2 19.4
0.3 17.3
0.4 14.0
0.5 9.8
0.6 5.3
0.7 1.6
0.8 0

1.2 Estimation from the Data

If we assume that the athlete maintains each of these accelerations for the full
interval, then we could calculate their speed as follows:

Acceleration Length of interval Increase in speed
20.4 0.1 20.4 × 0.1 = 2.04
20.3 0.1 20.3 × 0.1 = 2.03
19.4 0.1 19.4 × 0.1 = 1.94
17.3 0.1 17.3 × 0.1 = 1.73
14.0 0.1 14.0 × 0.1 = 1.40
9.8 0.1 9.8 × 0.1 = 0.98
5.3 0.1 5.3 × 0.1 = 0.53
1.6 0.1 1.6 × 0.1 = 0.16

8
∑

i=0

ai × 0.1 = 10.81

Each of these multiplications can be represented as an area of a rectangle and
together can be draw as:
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Total area is 10.81.

1.3 Improved approximations using a fitted model

The athlete does not, however, maintain their acceleration over the whole 0.1
second interval, their acceleration is continually decreasing. If we had their
acceleration every 0.05 seconds and repeated the calculation above we would
obtain a more accurate approximation. To find the athlete’s acceleration at
these intermediate times we first fit an interpolation function to the data. If we
find the best fitting model of the form y = at4 + bt3 + c using the techniques of
Module 3 we would find that this data is approximated by with the function

a(t) = 150.51t4 − 160.28t3 + 20.42

So the speed would be
15
∑

i=0

a(0.05 × i) × 0.05 = 10.299. This can be calculated

in Mathematica with the commands:

acc[t_]=150.51 t^4-160.28t^3+20.42

Sum[acc[0.05*i]*0.05,{i,0,0.8/0.05-1}]

As before, we can represent this a the sum of the areas of rectangles (each
rectangle has a height of a(0.05 × i) and a width 0.05. These are pictured
below:
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It would be even more accurate if only assumed constant acceleration for 0.01

second time intervals,that is, calculate

79
∑

i=0

a(0.01 × i) × 0.01. The Mathemat-

ica command is Sum[acc[0.01*i]*0.01,{i,0,0.8/0.01-1}] and the result is
9.89. The illustration of this is
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Here the bars are so narrow that sum in approximately equal to the area under
the curve.

1.4 Best possible approximation

The shorter the time interval over which we assume that the acceleration is
constant the more accurate the approximation is. So if we take find the limit
of these approximations as the interval width tended to zero we would have
best possible approximation of the athlete’s speed, and the exact value of the

area under the curve. That is lim
dt→0

0.8/dt−1
∑

i=0

a(dt× i)× dt in Mathematica this is

calculated with Limit[Sum[acc[dt*i]*dt,{i,0,0.8/dt-1}],dt->0], and the
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answer we get is 9.78853. So the athletes speed, to 3 significant figures, at the
end of this spurt of acceleration is 9.79 m/s.

1.5 Another method

Acceleration is, by definition, the instantaneous rate of change of velocity (speed).
So if a(t) represents the acceleration of a body at time t and v(t) represents the
speed of that body at time t then

dv

dt
= a(t)

In this problem the ‘body’ is the athlete, we know their acceleration (a(t) =
149.54t4− 159.51t3 + 20.42) and wish to know the athlete’s speed at t = 0.8. In
other words if we differentiated the function we want to know about (speed) we
would get 149.54t4 − 159.51t3 + 20.42 (acceleration), so we have to ‘undo’ the
differentiation that led to 149.54t4− 159.51t3 + 20.42. Another way to say this,
is that to find the speed we need to solve the differential equation

dv

dt
= 150.51t4 − 160.28t3 + 20.42

This equation is also called the model of the problem. Mathematica will solve
this differential equation in response to the command

DSolve[v’[t]==150.51 t^4-160.28t^3+20.42,v[t],t]

The solution it gives is 20.42t − 40.07t4 + 30.1t5 + C1, where C1 denotes the
arbitrary constant. We do not have to worry about the value of this constant if
we think of our problem as finding the increase in speed from t = 0 to t = 0.8
then we are finding v(0.8) − v(0) and this is

(20.42 × 0.8 − 40.07 × 0.84 + 30.1 × 0.85 + C1) − (0 + C1)

and the value of this is 9.79, to 3 significant figures.
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2 Anti-derivatives and Areas

2.1 Summary of anti-derivatives

The table below summarizes the anti-derivatives that should be memorized:

f(x)

∫

f(x)dx

xn, for n 6= −1
1

n + 1
xn+1 + C

1

x
ln(x) + C

eax 1

a
eax + C

cos(ax)
1

a
sin(ax) + C

sin(ax) −1

a
cos(ax) + C

For any other f(x) use the Mathematica command DSolve[F’[x]==f[x],F[x],x]

2.2 Calculating areas under curves

2.2.1 Theoretical summary

We have seen that we can find the area under a curve inbetween two values of
x we can sum the areas of rectangles under the curve, and take the limit as the
width of the rectangles tends to zero. In other words calculate:

lim
dx→0

⌊(b−a)/dx⌋
∑

i=0

f(a + idx) dx

In Mathematica the command for this is

Limit[ Sum[ f[a+i*dx], {i,0,(b-a)/dx-1} ], dx->0]

2.2.2 Example

For the function f(x) = −2x3 + 8x, calculate the following areas:

a. The sum of the areas of rectangles under the curve of width 0.2 from
x = 0.6 to x = 1.6. Provide a graphical illustration.

b. The sum of the areas of rectangles under the curve of width 0.05 from
x = 0.6 to x = 1.6. Provide a graphical illustration.

c. The sum of the areas of rectangles under the curve of width 0.01 from
x = 0.6 to x = 1.6. Provide a graphical illustration.

d. The area under the curve from x = 0.6 to x = 1.6.
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e. The sum of the areas of rectangles under the curve of width 0.2 from
x = 0.6 to x = 3.6. Provide a graphical illustration.

f. The sum of the areas of rectangles under the curve of width 0.01 from
x = 0.6 to x = 3.6. Provide a graphical illustration.

g. The area under the curve from x = 0.6 to x = 3.6. (Note Areas below
the x-axis are negative).

See file ares.nb for the solution.

2.2.3 Exercise for Homework 2

For the function f(x) = sin(x), calculate the following:

a. The sum of the areas of rectangles under the curve of width 0.2 from x = 0
to x = π

2 . Provide a graphical illustration.

b. The sum of the areas of rectangles under the curve of width 0.05 from
x = 0 to x = π

2 . Provide a graphical illustration.

c. The sum of the areas of rectangles under the curve of width 0.01 from
x = 0 to x = π

2 . Provide a graphical illustration.

d. The area under the curve from x = 0 to x = π
2 .

e. The sum of the areas of rectangles under the curve of width 0.2 from π
6

to 2π
3 . Provide a graphical illustration.

f. The sum of the areas of rectangles under the curve of width 0.01 from π
6

to 2π
3 . Provide a graphical illustration.

g. The area under the curve from π
6 to 2π

3 .

Copy your solutions into a word document and submit within WebCT.
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3 Problem 2

3.1 Statement

A factory needs to use a certain toxic chemical in its processing. There is a
steady flow, of 500 litres of water per hour, through the machinary that washes
the chemical into a settlement tank. The factory runs its process for eleven
hours and then stops for one hour to allow the equipment to be washed clear
of the chemical. The table below shows the concentration of chemical in the
outlet pipe, at different times during a typical twelve hour shift. Our task is to
calculate the total mass of chemical in the tank when it is full. The settlement
tanks measure 18m by 5m and are 2m deep.

Time (Hours) Concentration (mg/L)
0 0.00
2 0.00
4 0.28
6 3.33
8 100
9 481
10 1618

10.5 2368
11 2415

11.5 1946
12 0.00

3.2 Estimation from the Data

If we assume that the concentration is constant over the time intervals

Concentration Length of interval Amount of chemical
0.00 4.0 0.00 × 4.0 × 500 = 0.00
0.28 2.0 0.28 × 2.0 × 500 = 0.56
3.33 2.0 3.33 × 2.0 × 500 = 6.66
100 1.0 100 × 1.0 × 500 = 100
481 1.0 481 × 1.0 × 500 = 481
1618 0.5 1618× 0.5 × 500 = 809
2368 0.5 2368 × 0.5 × 500 = 1184
2415 0.5 2415× 0.5 × 500 = 1207.5
1946 0.5 1946× 0.5 × 500 = 973

9
∑

i=0

ai × dti × 500 = 2 380 860

Each of these multiplications can be represented as an area of a rectangle times
500, and together can be draw as:
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Total area is 4761.72. So the total amount of chemical flowing into the tank in
one shift is 4761.72× 500, i.e., 2 380 860.

3.3 Improved approximations using a fitted model

The concentration does not, however, remain constant for the whole time inter-
val, it changes continuously within the intervals. If we had a measurement of
the concentration every 30 minutes we could assume that it remained constant
over these intervals, and obtain a more accurate estimate. The closest we can
get to 30 minute measurements is to fit an interpolation function to the data.
In Module 3 we saw a very similar problem and using that process we see that
the concentration,c, at time t may be written as:

c(t) = 18302(12− t)2e1.9291(12−t)

So the ‘30 minute’ estimate would be 500

23
∑

i=0

c(0.5i) 0.5 = 2 540 896. To calculate

this in Mathematica we can type:

con[t_]=18302*(12-t)^2*E^(1.9291(12-t));

500*Sum[con[0.5*i]*0.5,{i,0,23}]

The graphical representaion of this sum is
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It would be more accurate still to assume that the concentration was constant for
only 6 minutes, and calculate 500

∑119
i=0 0.1c(0.1i). The Mathematica command

that does this is 500*Sum[con[0.1*i]*0.1,{i,0,12/0.1-1}] and the result is
2 549 429. The illustration of this is
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3.4 Best possible approximation

Taking this process to its limit, the best approximation we could make by this
process is

lim
dt→0

500

12/dt−1
∑

i=0

c(i dt) dt

The Mathematica command that would calculate this is

Limit[500*Sum[con[i*dt]*dt,{i,0,12/dt-1}],dt->0]

Unfortunately Mathematica can have problems calculating limits for transenden-
tal functions, so the best we can do is to set dt to a very small value, e.g., 10−10

and calculate the sum. The answer is 2.54944 × 106. This is in mg so is equal
to 2.54944kg.
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3.5 Differential Model

If the amount of a chemical is evenly distributed through out a volume of water
then the concentration is given by the word formula

Concentration =
Amount

Volume

In this problem, however, the amount in the water changes continuously. So if
we focus on a very short time interval, from t to t + dt say, and think about the
water that leaves the outlet pipe in this time interval, we can say:

Average Concentration
of water that passes

between time t and time t + dt

=
Amount of Chemical to pass in dt hours

Volume of water to pass in dt hours

=
A(t + dt) − A(t)

500 dt

where we are using A(t) to represent the total mass of chemical to have passed
through the pipe in t hours. The instantaneous concentration at time t will,
therefore be given by:

c(t) = lim
dt→0

A(t + dt) − A(t)

500 dt
=

1

500

dA

dt

This allows to say that the differential model of the problem is:

dA

dt
= 500c(t) = 500

(

18302(12− t)2e1.9291(12−t)
)

To solve this equation in Mathematica we type:

DSolve[A’[t]==500*(bestA*(12-t)^2*E^(bestB*(12-t))),A[t],t]

The solution that Mathematica gives is

t 1.9290836612579962

C[1] + E

2

*(t -0.010500525421595833 + t 0.00041940429675416064 + 0.06583748987344133)

If we rephase the main question to be find the increase in the amount to flow into
the tank in a 12 hour shift, then we are asking for A(12)−A(0) and so will not
have to worry about the value of the arbitary constant C[1]. In Mathematica
we type A[12]-A[0] and we get 2.54944× 106.
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3.6 Final calculation

The solution of 2.54944 × 106mg is the mass of chemical to flow into the tank
in one shift. To calculate the total amount to flow into a full tank we must find
out how many shifts it takes to fill a tank. Volume of a tank is 18 × 5 × 2 =
180m3. The total amount of water in a full tank is, therefore 180 000L (a
volume of 1m3 holds 1 000L of water). The flow rate is 500L per hour so it takes
180 000

500 = 360 hours to fill the tank. There are 12 hours in a shift, so it takes 30
shifts to fill a tank. Hence the total mass of chemical to flow into the tank is
30 × 2.54944× 106 = 7.64833× 107mg or 76.4833kg.

3.7 Exercise for Homework 3

1. Another factory runs on on 4 hour shifts and the concentration function
is c(t) = 3.2t(4 − t)e−2.5(4−t)t. The flow rate is 100 L/hour.

(a) What is the total amount of chemical to flow into the tank in the
first 2 hours of the shift?

(b) What is the total amount of chemical to flow into the tank in a shift?

(c) A full tank holds 1600L. What is the mass of the chemical in a full
tank?

2. At another factory the concentration function, for a 6 hour shift, is know
to be c(t) = 3(6 − t)e−0.01(6−t). The flow rate is 200 L/hour.

(a) State the differential model for A(t), the total amount of chemical to
flow out in the first t hours of the shift.

(b) Find the increase in the amount of chemical to flow into the tank
between the second and fifth hour of the shift.

Copy your solutions into a word document and submit within Moodle.
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4 Problem 3

4.1 Statement

Ten days after a settlement tank is full, concentration measuments are taken
various depths in the tank. The results are below. Our task is to estimate the
total amount of chemical in the tank. Remember that the tank measures 18m
by 5m and is 2m deep.

Depth (m) Concentration (mg/L)
0.0 63.5
0.25 103
0.5 152
0.75 178
1.0 281
1.25 303
1.5 387
1.75 892
2.0 3120

4.2 Estimation from the Data

If we assume that the concentration is constant for the 25cm inbtween measure-
ments

Concentration Length of interval Amount of chemical
63.5 0.25 63.5 × 0.25 × 5 × 18 × 1000 = 1.43 × 106

103 0.25 103 × 0.25 × 5 × 18 × 1000 = 2.32 × 106

152 0.25 152 × 0.25 × 5 × 18 × 1000 = 3.42 × 106

178 0.25 178 × 0.25 × 5 × 18 × 1000 = 4.01 × 106

281 0.25 281 × 0.25 × 5 × 18 × 1000 = 6.32 × 106

303 0.25 303 × 0.25 × 5 × 18 × 1000 = 6.82 × 106

387 0.25 387 × 0.25 × 5 × 18 × 1000 = 8.71 × 106

892 0.25 892 × 0.25 × 5 × 18 × 1000 = 20.1 × 106

9
∑

i=0

ai × dhi × 5 × 18 × 1 000 = 53 088 800

Each of these multiplications can be represented as an area of a rectangle times
18 × 5 × 1 000, and together can be draw as:
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Total area is 589.875. So the total amount is 589.875 × 18 × 5 × 1 000, i.e.,
53 088 800.

4.3 Improved approximations using a fitted model

The concentration does not, however, remain constant for the whole 25cm,
it changes continuously within the depths. If we had a measurement of the
concentration every 10cm we could assume that it remained constant over these
intervals, and obtain a more accurate estimate. The closest we can get to 10cm
measurements is to fit an interpolation function to the data. Tutorialal groups
from previous semesters have fitted a model of the form

c(h) =
a√

b −
√

h

to this data and found that the optimal model was:

c(h) =
105.5

1.45 −
√

h

So the ‘10cm’ estimate would be 90 000

19
∑

i=0

c(0.1i) 0.1 = 64 328 200. To calculate

this in Mathematica we can type:

con[h_]=105.5138/(1.44801-Sqrt[h]);

90000*Sum[con[0.1*i]*0.1,{i,0,19}]

The graphical representaion of this sum is
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It would be more accurate still to assume that the concentration was constant
for only 1cm, and calculate 90 000

∑199
i=0 0.01c(0.01i). The Mathematica com-

mand that does this is 90000*Sum[con[0.01*i]*0.01,{i,0,2/0.01-1}] and
the result is 75 127 900. The illustration of this is
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4.4 Best possible approximation

Taking this process to its limit, the best approximation we could make by this
process is

lim
dt→0

90 000

2/dh−1
∑

i=0

c(i dh) dh

The Mathematica command that would calculate this is

Limit[90000*Sum[con[i*dh]*dh,{i,0,2/dh-1}],dh->0]

Unfortunately Mathematica can have problems calculating limits for transenden-
tal functions, so the best we can do is to set dh to a very small value. A further
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problem arises because Mathematica refuses to calculate the sum for values of
dh below 0.00001. So the best approximation we can calculate is 7.64722× 107.
This is in mg so is equal to 76.4722kg.

4.5 Differential Model

If the amount of a chemical is evenly distributed through out a volume of water
then the concentration is given by the word formula

Average Concentration =
Amount

Volume

In this problem, however, the amount in the water changes continuously as we
go deeper down in the tank. So if we focus on the thin ‘sheet’ of water illustrated
below

dh

h h + dh

between the depths of h and h + dh, we can say:

Average Concentration
between depths of

h and h + dh

=
Amount of Chemical within the ‘sheet’

Volume of water with in the ‘sheet’

=
A(h + dh) − A(h)

18 × 5 × 1 000 × dh

where we are using A(h) to represent the total mass of chemical that is contained
in the top hm of the tank. The instantaneous concentration at depth h will,
therefore be given by:

c(h) = lim
dh→0

A(h + dh) − A(h)

90 000 dh
=

1

90 000

dA

dt

This allows to say that the differential model of the problem is:

dA

dh
= 90 000c(h) =

90 000a√
b −

√
h

To solve this equation in Mathematica we type:

DSolve[A’[h]==90000*bestA/(Sqrt[bestB]-Sqrt[h]),A[h],h]
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The solution that Mathematica gives is

C[1] + 9.496244760263806e6

*(Sqrt[h] -2. + -2.8960278685557594 Log[-1.55876932e8 + Sqrt[h] 1.07648779e8])

If we rephase the main question to be find the increase in the amount from
the top of the tank to the bottom, then we are asking for A(2) − A(0), and
we will not have to worry about the value of the arbitary constant C[1]. In
Mathematica we type A[2]-A[0] and we get 7.64764× 107.

4.6 Final calculation

This amount is similar, but not equal to, the amount that we estimated as
flowing into the tank. The difference in the amounts is 7.64833×107−7.64764×
107 = 6921.97mg. This is the mass of chemical that we estimate has been lost
from the tank during the time that the water has been settling. This may, or
may not, be a large amount, it depends on the nature of the chemical.

4.7 Exercise for Homework 4

1. At a different time the concentration function, for concentrations at diffe-

tent depths in a settlement tank is c(h) =
120

3
√

2.05 − 3
√

h
.

(a) Estimate the mass of chemical in the tank by assuming that the
concentration is constant for ‘sheets’ of depth 0.25cm.

(b) Find the best estimate that Mathematica will allow, for the mass of
chemical in the tank.

2. Another tank measures 10m by 4m and is 1.5m deep. The concentration

function is found to be c(h) =
100√

1.6 −
√

h

(a) State a differential model for A(h), the mass of chemical in the top
h metres of the tank.

(b) Find the increase in the mass of chemical from the top to the bottom
of the tank.

Copy your solutions into a word document and submit within Moodle.
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