Ν	ame:	
ΤN	ame.	

Pledged:_____

Problem	Points	Score
1	20	
2	20	
3	10	
4	20	
5	15	
6	15	
Total	100	

Math 115: Applied Calculus Module 5 Exam

SHOW ALL WORK. May the force be with you.

(20 points) Approximate the area under the curve f(x) = 2x² from x = 2 to x = 3 using each of the following methods.
a. (10 points) A Right Riemann Sum with n = 5.

b. (10 points) A Midpoint Riemann Sum with n = 5.

2. (20 points) Determine the exact value of each definite integral.

a. (10 points) $\int_{1}^{2} x^{3} + 4\sqrt{x} \, dx$

c. (10 points)
$$\int_0^{\pi} 2e^{-x} + 2\cos(2.5x) \, dx$$

3. (10 points) Determine the average value of the function $f(x) = \frac{1}{x}$ as x ranges from x = 1 to x = 5.

4. (20 points) What is the area between the curves $y = x^3$ and y = 4x as x ranges from -2 to 2? You may **not** use the graphical feature on your calculator for this question.

Hint: Find the (three) intersection points of these functions and then plug in x-values between the intersection points to determine which function is larger on that interval.

5. (15 points) What is the volume of the solid formed by rotating y = 2x - 3 as x ranges from 0 to 2 about the x-axis?

6. (15 points) Compute the double integral.

$$\int_0^1 \left(\int_0^3 x^2 y - e^x \, dy \right) dx$$