Name: \qquad

Pledged: \qquad

Math 115: Applied Calculus Module 5 Exam

Problem	Points	Score
1	20	
2	20	
3	10	
4	20	
5	15	
6	15	
Total	100	

SHOW ALL WORK. May the force be with you.

1. (20 points) Approximate the area under the curve $f(x)=2 x^{2}$ from $x=2$ to $x=3$ using each of the following methods.
a. (10 points) A Right Riemann Sum with $n=5$.
b. (10 points) A Midpoint Riemann Sum with $n=5$.
2. (20 points) Determine the exact value of each definite integral.
a. (10 points)

$$
\int_{1}^{2} x^{3}+4 \sqrt{x} d x
$$

c. (10 points)

$$
\int_{0}^{\pi} 2 e^{-x}+2 \cos (2.5 x) d x
$$

3. (10 points) Determine the average value of the function $f(x)=\frac{1}{x}$ as x ranges from $x=1$ to $x=5$.
4. (20 points) What is the area between the curves $y=x^{3}$ and $y=4 x$ as x ranges from -2 to 2 ? You may not use the graphical feature on your calculator for this question. Hint: Find the (three) intersection points of these functions and then plug in x-values between the intersection points to determine which function is larger on that interval.
5. (15 points) What is the volume of the solid formed by rotating $y=2 x-3$ as x ranges from 0 to 2 about the x-axis?
6. (15 points) Compute the double integral.

$$
\int_{0}^{1}\left(\int_{0}^{3} x^{2} y-e^{x} d y\right) d x
$$

