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Minicourse Abstract

Let G be a compact Lie group and let V be a unitary G -representation.
Then there is a quadratic moment map J : V → g∗ with respect to which
V is a Hamiltonian manifold. Letting Z denote the zero fiber J−1(0) of
the moment map, the corresponding symplectic quotient is given by
M0 = Z/G . It has the structure of a symplectic stratified space as well as
a semialgebraic set, and it is equipped with an algebra of regular functions
R[M0], a Poisson subalgebra of its algebra of smooth functions.

In these lectures, we will introduce methods of computing the algebra
R[M0] of regular functions on such a symplectic quotient using methods
from invariant theory and computational algebraic geometry. In addition,
we will explain how these computations can be used to observe and verify
properties of the symplectic quotient. Topics will include using Groebner
bases to compute invariant polynomials, elimination theory, and methods
of computing Hilbert series of Cohen-Macaulay algebras. In addition, we
will introduce the software packages Mathematica and Macaulay2 for
these kinds of computations.
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Minicourse Lectures

1 Invariant theory and Gröbner bases

2 Singular symplectic reduction and regular functions on symplectic
quotients

3 The Hilbert series of the regular functions on a symplectic quotient

4 Elimination theory and the nonabelian case
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Lecture 1: Invariant Theory and Groebner Bases

1 Affine varieties and ideals of polynomials

2 Invariant Polynomials

3 Gröbner Bases

4 Representations of Tori

5 Finding invariants using Gröbner bases

6 Finding Relations Using Gröbner Bases
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Affine varieties and ideals of polynomials

Affine varieties and ideals of polynomials
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Affine varieties and ideals of polynomials

Affine Varieties

Let K denote either R or C.

To fix notation:

Kn is affine space, the vector space {(a1, . . . , an) : ai ∈ K} under
component-wise addition and K-multiplication.

A monomial in the variables x1, . . . , xn is an expression of the form
xp1

1 xp2
2 · · · x

pn
n where each pi is a nonnegative integer. The degree of

xp1
1 xp2

2 · · · x
pn
n is p1 + · · ·+ pn.

K[x1, . . . , xn] is the set of polynomials in x1, . . . , xn with coefficients
in K, i.e. finite linear combinations of monomials in x1, . . . , xn.

We identify K[x1, . . . , xn] with a subset of the continuous functions
Kn → K in the obvious way.

A subset V of Kn is an affine variety if there is a finite subset
F ⊂ K[x1, . . . , xn] such that V can be described as

V = V(F) := {(a1, . . . , an) ∈ Kn : f (a1, . . . , an) = 0 ∀f ∈ F}.
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Affine varieties and ideals of polynomials

Affine Varieties: Examples

Example

In R2, the unit circle is the vanishing set of F = {x2 + y2 − 1}, hence an
affine variety.
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Affine varieties and ideals of polynomials

Affine Varieties: Examples

Example

In R2, the variety corresponding to F = {x2 − y2} consists of the lines
y = x and y = −x .

-2 -1 0 1 2

-2

-1

0

1

2

UFRJ; H.-C. Herbig, C. Seaton Computational methods symplectic quotients January 11–12th, 2016 8 / 77



Affine varieties and ideals of polynomials

Affine Varieties: Examples

Example

In R3, the variety corresponding to F = {x2 + y2 − z} is a paraboloid:
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Affine varieties and ideals of polynomials

Affine Varieties: Examples

Example

In R3, the variety corresponding to F = {x2 + y2 − z2} is a cone:
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Affine varieties and ideals of polynomials

Affine Varieties: Examples

Example

In R3, the variety corresponding to F = {x2 + y2 − z2, x2 + y2 − z} the
intersection of the cone and paraboloid:
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Affine varieties and ideals of polynomials

Affine Varieties: Examples

Example

In R3, the Whitney umbrella is the variety of F = {x2 − y2z}:
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Affine varieties and ideals of polynomials

Ideals: Motivation

Let V = V(F) be the variety of Kn described by the subset
F ⊂ K[x1, . . . , xn].

If f ∈ F and g ∈ K[x1, . . . , xn], then

(fg)(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ V .

For instance, in R[x , y ], any polynomial of the form (x2 + y2 − 1)g(x , y)
must vanish on the unit circle.

Hence, the subset of K[x1, . . . , xn] that vanishes on V is much larger than
F .
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Affine varieties and ideals of polynomials

Ideals

Definition

Let I be a subset of K[x1, . . . , xn]. Then I is an ideal if

0 ∈ I ,

∀f1, f2 ∈ I , f1 + f2 ∈ I , and

∀f ∈ I , g ∈ K[x1, . . . , xn], fg ∈ I .

If f1, . . . , fr ∈ K[x1, . . . , xn], the ideal generated by f1, . . . , fr is

〈f1, . . . , fr 〉 =

{
r∑

i=1

hi fi : hi ∈ K[x1, . . . , xn]

}
.

It is the smallest ideal containing f1, . . . , fr .

Exercise: Show that 〈f1, . . . , fr 〉 is in fact an ideal.
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Affine varieties and ideals of polynomials

Ideals

Definition

Let S be any subset of Kn. The ideal of S is

I(S) = {f ∈ K[x1, . . . , xn] : f (c1, . . . , cn) = 0 ∀(c1, . . . , cn) ∈ S}.

i.e. the set of polynomials that vanish on S .

To see that I(S) is in fact an ideal, let S be an arbitrary subset of Kn.

0 vanishes on all of Kn so 0 ∈ I(S) is obvious.

If f1, f2 ∈ I(S), then for each (c1, . . . , cn) ∈ S ,
f1(c1, . . . , cn) = f2(c1, . . . , cn) = 0.Therefore
(f1 + f2)(c1, . . . , cn) = 0 + 0 = 0 and f1 + f2 ∈ I(S).

If f ∈ I(S) and g ∈ K[x1, . . . , xn], then for each (c1, . . . , cn) ∈ S ,
f (c1, . . . , cn) = 0.Therefore
(fg)(c1, . . . , cn) = f (c1, . . . , cn)g(c1, . . . , cn) = 0 · g(c1, . . . , cn) = 0
and fg ∈ I(S).
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Affine varieties and ideals of polynomials

Ideals and Varieties

So we have:

subsets of Kn I−→ ideals of K[x1, . . . , xn]

and
subsets of K[x1, . . . , xn]

V−→ varieties in Kn.

Lemma

If f1, . . . , fr ∈ K[x1, . . . , xn], then

〈f1, . . . , fr 〉 ⊆ I(V(f1, . . . , fr )).
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Affine varieties and ideals of polynomials

Ideals and Varieties

Proof.

Given
r∑

i=1
hi fi ∈ 〈f1, . . . , fr 〉, pick (c1, . . . , cn) ∈ V(f1, . . . , fr ).

Then for each i , fi (c1, . . . , cn) = 0 by definition. Hence(
r∑

i=1

hi fi

)
(c1, . . . , cn) =

r∑
i=1

hi (c1, . . . , cn)fi (c1, . . . , cn)

=
r∑

i=1

hi (c1, . . . , cn) · 0 = 0.

So
r∑

i=1
hi fi ∈ I(V(f1, . . . , fr )).
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Affine varieties and ideals of polynomials

Ideals and Varieties

However, I(V(f1, . . . , fr )) is often larger than 〈f1, . . . , fr 〉.

Example

In R[x ], the ideal I = 〈x2〉 contains all polynomials with no constant or
linear terms.

Then V(I ) = {0}.

However, I(V(I )) contains x .
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Affine varieties and ideals of polynomials

Ideals and Varieties

Lemma

If S ⊆ Kn, then
S ⊆ V(I(S)).

Exercise: Prove this lemma.

Again, equality need not hold.

Example

If S = Q ⊂ R, any function that vanishes on Q must vanish on R by
continuity, so I(S) = {0} and V(I(S)) = R.
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Affine varieties and ideals of polynomials

Radical Ideals

Definition

(K = C) The radical of an ideal I of C[x1, . . . , xn] is

√
I := {f ∈ C[x1, . . . , xn] : f m ∈ I for some m > 0}.

An ideal I of C[x1, . . . , xn] is radical if I =
√
I , i.e. for any

f ∈ C[x1, . . . , xn], if f m ∈ I for a positive integer m, then f ∈ I .

(K = R) The real radical of an ideal I of R[x1, . . . , xn] is

R√
I := {f ∈ R[x1, . . . , xn] : ∃g1, . . . , gr ∈ R[x1, . . . , xn],

f 2m + g2
1 + · · · g2

r ∈ I for some m > 0}

An ideal I of R[x1, . . . , xn] is real if I = R√I , i.e. for any
f1, . . . , fr ∈ R[x1, . . . , xn], f 2

1 + · · ·+ f 2
r ∈ I for a positive integer m implies

f1, . . . , fr ∈ I .
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Affine varieties and ideals of polynomials

Correspondence between Ideals and Varieties

Theorem (Hilbert’s Nullstellensatz)

If I is an ideal of C[x1, . . . , xn], then I(V(I )) =
√
I .

Hence, there is a bijection between affine varieties in Cn and radical ideals
in C[x1, . . . , xn].

If I is an ideal of R[x1, . . . , xn], then I(V(I )) = R√I .

Hence, there is a bijection between affine varieties in Rn and real ideals in
C[x1, . . . , xn].

Proofs can be found in Cox–Little–O’Shea [2] (over C) and
Bochnak–Coste–Roy [1] (over R).
In the correspondence, the ideals of K[x1, . . . , xn] that are maximal
(contained in no larger ideal except K[x1, . . . , xn] itself) correspond to
points in the variety.
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Affine varieties and ideals of polynomials

The Polynomial Functions on a Variety

If I is an ideal of K[x1, . . . , xn], define the equivalence class ≡ mod I on
K[x1, . . . , xn] by

g1 ≡ g2 mod I iff g1 − g2 ∈ f .

The equivalence class of g is denotes g + I .
The quotient algebra K[x1, . . . , xn]/I is defined to be the set of
equivalence classes in K[x1, . . . , xn].
It can be shown that the operations

(g1 + I ) + (g2 + I ) := (g1 + g2) + I and (g1 + I )(g2 + I ) := (g1g2) + I

are well defined on K[x1, . . . , xn]/I .
If I = I(V ) is the ideal of a variety V , then K[x1, . . . , xn]/I is thought of
as the polynomial functions on V .
Two elements of K[x1, . . . , xn] represent the same element of
K[x1, . . . , xn]/I if and only if they have the same value at every point in V .
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Invariant Polynomials

Invariant polynomials
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Invariant Polynomials

Invariant Polynomials

Let GLn(K) denote the group of invertible n× n matrices with entries in K.

Definition

A subset G ⊆ GLn(K) is a subgroup, written G ≤ GLn(K), if

The identity Id ∈ G ,

If A,B ∈ G , then the matrix product AB ∈ G , and

If A ∈ G , then A−1 ∈ G .

If, G ≤ GLn(K) and f ∈ K[x1, . . . , xn], then f is G -invariant if f ◦ A = f
for each A ∈ G .

The collection of all G -invariant polynomials is denoted K[x1, . . . , xn]G .
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Invariant Polynomials

Invariant Polynomials: Basic Examples

Let G = {1,−1} ⊂ GL1(R).

For f ∈ R[x ], it is easy to see that f (x) = f (−x) if and only if f (x) is
even, i.e. f (x) = g(x2) for some g ∈ R[w ].

Hence,
R[x ]G = {g(x2) : g ∈ R[w ]}.
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Invariant Polynomials

Invariant Polynomials: Basic Examples

Let A =

(
0 1
1 0

)
, and let G = {Id,A} ⊂ GL2(C).

For f ∈ C[x , y ], we have (f ◦ A)(x , y) = f (y , x).

Exercise: For f ∈ C[x , y ], f ◦ A = f if and only if f (x , y) = g(x + y , xy)
for some g ∈ C[w1,w2].

Hint: If h is a monomial of degree d , then g ◦ A is a monomial of degree
d . So f is G -invariant if and only if it is the sum of homogeneous
G -invariant polynomials (i.e. all terms have the same degree).

Hence,
C[x , y ]G = {g(x + y , xy) : g ∈ C[w1,w2]}.

Elements of C[x , y ]G are called symmetric polynomials in two variables.
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Invariant Polynomials

Hilbert Bases

The set K[x1, . . . , xn]G is closed under addition, multiplication, and scalar
multiplication of polynomials, and hence is a subalgebra or subring of
K[x1, . . . , xn].

This is easy to see, e.g. (f + g) ◦A = (f ◦A) + (g ◦A) so that (f ◦A) = f
and (g ◦ A) = g implies (f + g) ◦ A = f + g .

Note that K[x1, . . . , xn]G is not an ideal of K[x1, . . . , xn].

We refer to {g(x2) : g ∈ C[w ]} as the subalgebra generated by x2,
written C[x2].

Similarly, {g(x + y , xy) : g ∈ C[w1,w2]} = C[x + y , xy ] is the subalgebra
generated by {x + y , xy}.
In general, the subalgebra generated by f1, . . . , fr ∈ K[x1, . . . , xn] is
{g(f1, . . . , fr ) : g ∈ K[w1, . . . ,wr ]}. We refer to {f1, . . . , fr} as a Hilbert
basis for the subalgebra.

Hilbert basis (even minimal Hilbert bases) are often not unique.
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Invariant Polynomials

Invariant Polynomials: Another Example

Let B =

(
−1 0
0 −1

)
, and let G = {Id,B} ⊂ GL2(R).

For f ∈ R[x , y ], we have (f ◦ B)(x , y) = f (−x ,−y). Hence, each
monomial of degree d is multiplied by (−1)d .

For f ∈ R[x , y ], f ◦ B = f if and only if f (x , y) = g(x2, y2, xy) for some
g ∈ R[w1,w2,w3].

Hence, {x2, y2, xy} is a Hilbert basis for R[x , y ]G , i.e.

R[x , y ]G = R[x2, y2, xy ].

In this example, however, the elements of the Hilbert basis satisfy a
relation:

(x2)(y2) = (xy)2.
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Invariant Polynomials

Algebraic Dependence

Definition

We say that a finite set {f1, . . . , fr} ⊂ K[x1, . . . , xn] is algebraically
independent if g(f1, . . . , fr ) = 0 implies g = 0.

If there is a nonzero g ∈ K[w1, . . . ,wr ] such that g(f1, . . . , fr ) = 0, then
{f1, . . . , fr} is algebraically dependent.

If a subalgebra has an algebraically independent Hilbert basis {f1, . . . , fr},
then the subalgebra has the same properties as K[w1, . . . ,wr ].

We can think of it as “the same as” polynomial functions on Kr .
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Invariant Polynomials

Algebraic Dependence

If {f1, . . . , fr} is algebraically dependent, define

R(f1, . . . , fr ) = {g ∈ K[w1, . . . ,wr ] : g(f1, . . . , fr ) = 0}.

Then R(f1, . . . , fr ) is an ideal, the ideal of relations of {f1, . . . , fr}.
It is easy to see that R(f1, . . . , fr ) is an ideal:

Obviously, 0 ∈ R(f1, . . . , fr ).

If g1, g2 ∈ R(f1, . . . , fr ), then g1(f1, . . . , fr ) = g2(f1, . . . , fr ) = 0, so
(g1 + g2)(f1, . . . , fr ) = 0 + 0 = 0 and (g1 + g2) ∈ R(f1, . . . , fr ).

If g ∈ R(f1, . . . , fr ) and h ∈ K[w1, . . . ,wr ], then

(gh)(f1, . . . , fr ) = g(f1, . . . , fr )h(f1, . . . , fr ) = 0 · h(f1, . . . , fr ) = 0,

and gh ∈ R(f1, . . . , fr ).

If a subalgebra has an algebraically dependent Hilbert basis {f1, . . . , fr},
then the subalgebra is “the same as” the polynomial functions on the
variety V(R(f1, . . . , fr )).
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Invariant Polynomials

Invariant Polynomials: Example Revisited

For B =

(
−1 0
0 −1

)
and G = {Id,B} ⊂ GL2(R),

R[x , y ]G = R[x2, y2, xy ].

The Hilbert basis {x2, y2, xy} is algebraically dependent, with relation

(x2)(y2) = (xy)2, i.e. w1w2 − w2
3 = 0.

The ideal of relations is R(x2, y2, xy) = 〈w1w2 − w2
3 〉.

Hence, R[x , y ]G is the “same as” the polynomial functions on the affine
variety in R3 defined by w1w2 − w2

3 .
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Invariant Polynomials

Invariant Polynomials: Example Revisited

The affine variety in R3 defined by w1w2 − w2
3 :
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Invariant Polynomials

Invariant Polynomials: Some Facts

For an arbitrary subgroup G ≤ GLn(K), K[x1, . . . , xn]G might not
have a Hilbert basis.
For many subgroups (reductive subgroups) it does.

If G is a closed subgroup of GLn(K) then it is an example of a Lie
group. Compact (bounded) Lie groups are always reductive by a
theorem of Hilbert and Weyl.

If {f1, . . . , fr} is a Hilbert basis for K[x1, . . . , xn]G , the variety
V(R(f1, . . . , fr )) plays the role of the quotient of Kn by G , and is
written Kn//G . It is called the affine GIT quotient.

When K = C, there is a bijection between the closed G-orbits in Cn

and Cn//G .

When K = R, there is a bijection between the closed G-orbits in Kn

and a subset of Rn//G .

When G is a compact Lie group, all orbits are closed.
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Invariant Polynomials

An Example with Non-Closed Orbits

Let G = GL1(C). This is the group of nonzero complex numbers, denoted
C×.

For f ∈ C[x ], it is easy to see that f (x) = f (zx) ∀z ∈ C× if and only if
f (x) = c for some c ∈ C. That is,

C[x ]C
×

= C.

Hence, C[x ]C
×

is the polynomial functions on a point (no variables).

In terms of this action, C has two orbits: {0} and all other points.

The variety of C[x ]C
×

, a single point, corresponds to the closed orbit {0}.
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Gröbner Bases

Gröbner Bases
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Gröbner Bases

Ideal Membership

Ideal Membership Problem: Given an ideal

I = 〈f1, . . . , fr 〉 ⊆ K[x1, . . . , xn]

and a polynomial g ∈ K[x1, . . . , xn], decide whether g ∈ 〈f1 . . . , fr 〉.

If n = r = 1, then we can use polynomial division to find the answer.

Example

In R[x ], the polynomial x5 − 3x2 + 2 is not an element of 〈x2 + 1〉.

This can be seen by dividing x5 − 3x2 + 2 by x2 + 1 and seeing that the
remainder is x + 5.
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Gröbner Bases

Ideal Membership

Example

In R[x ], the polynomial x5 − 3x2 − x − 3 is an element of 〈x2 + 1〉.

Dividing x5 − 3x2 − x − 3 by x2 + 1, we see that

x5 − 3x2 − x − 3 = (x3 − x − 3)(x2 + 1) ∈ 〈x2 + 1〉.

In fact, it can be shown that when n = 1 (one variable), every ideal is of
the form 〈f 〉, so r = 1 in every case.
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Gröbner Bases

Ideal Membership

Ideal Membership Problem: Given an ideal

I = 〈f1, . . . , fr 〉 ⊆ K[x1, . . . , xn]

and a polynomial g ∈ K[x1, . . . , xn], decide whether g ∈ 〈f1 . . . , fr 〉.

A natural idea to try is to divide g by f1, then the remainder by f2, then
the remainder by f3, etc. to try to express g in the form

∑r
i=1 hi fi for

some hi ∈ K[x1, . . . , xn].

But polynomial division depends on how you order the terms of g , and if
we fix this, the answer depends on the order of f1, . . . , fr , etc.
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Gröbner Bases

Monomial Orders

Definition

A monomial order on K[x1, . . . , xn] is a linear order on the set of
monomials such that

1 � m for each monomial m, and

m1 ≺ m2 implies m1m3 ≺ m2m3 for monomials m1, m2, m3.

Example

In K[x ], the only monomial order is 1 ≺ x ≺ x2 ≺ x3 ≺ · · · .

With more than one variable, it is typical to assume that x1 � x2 � · · · .

Example

Lexicographic order: m1 = xp1
1 · · · x

pn
n ≺ m2 = xq1

1 · · · x
qn
n if the first

nonzero entry of p1 − q1, p2 − q2, . . . , pn − qn is negative.

UFRJ; H.-C. Herbig, C. Seaton Computational methods symplectic quotients January 11–12th, 2016 39 / 77



Gröbner Bases

Monomial Orders

Example

Degree lexicographic order: m1 = xp1
1 · · · x

pn
n ≺ m2 = xq1

1 · · · x
qn
n if

degm1 < degm2 or degm1 = degm2 and the first nonzero entry of
p1 − q1, p2 − q2, . . . , pn − qn is negative.

Example

Degree reverse lexicographic order: m1 = xp1
1 · · · x

pn
n ≺ m2 = xq1

1 · · · x
qn
n

if degm1 < degm2 or degm1 = degm2 and the last nonzero entry of
p1 − q1, p2 − q2, . . . , pn − qn is positive.
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Gröbner Bases

Gröbner Bases

Definition

Given a monomial order ≺ on K[x1, . . . , xn], let f ∈ K[x1, . . . , xn], and let
I be an ideal of K[x1, . . . , xn].

The initial monomial init(f ) of f is the largest monomial in f with
respect to ≺.

The initial ideal of the ideal I is the ideal generated by the initial
monomials of the elements of I .

A finite set {g1, . . . , gs} of I is a Gröbner basis for I if
{init(g1), . . . , init(gs)} generates the initial ideal of I .

A Gröbner basis {g1, . . . , gs} for I is reduced if, for i 6= j , init(gi )
does not divide any monomial in gj .
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Gröbner Bases

Properties of Gröbner Bases

Gröbner bases have properties that can be used to solve problems like the
Ideal Membership Problem.

There is a division algorithm that allows one to divide a polynomial g by a
Gröbner basis for an ideal I , yielding a unique remainder.
(The remainder is zero if and only if g ∈ I ).

Gröbner bases generalize the Euclidean algorithm for polynomials to the
multivariable case, and Gaussian elimination to polynomials of degree
larger than 1.

Buchberger’s algorithm is an algorithm for computing a Gröbner basis
for an ideal of K[x1, . . . , xn], and is implemented on many computer
algebra systems.

More information can be found in Cox–Little–O’Shea [2].
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Gröbner Bases

Computing Gröbner bases on Mathematica

To compute the Gröbner basis of the ideal I = 〈f1, . . . , fr 〉 in K[x1, . . . , xn]
on Mathematica, the command is

GroebnerBasis[{f1,f2,...,fr}, {x1,x2,...,xr}]

The monomial order is lexicographic (and based on the order in which the
variables are listed).

GroebnerBasis[{f1,f2,...,fr}, {x1,x2,...,xr},

MonomialOrder->DegreeReverseLexicographic]

changes the monomial order.

GroebnerBasis[{f1,f2,...,fr}, {x1,x2,...,xr},

{x1,x2}

eliminates x1 and x2 in the Gröbner basis (i.e. removes any elements
involving these variables).

UFRJ; H.-C. Herbig, C. Seaton Computational methods symplectic quotients January 11–12th, 2016 43 / 77



Representations of Tori

Representations of Tori
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Representations of Tori

Compact Tori

Let S1 = {z ∈ C : |z | = 1}, considered with the operation of
multiplication.

This is the unit circle in the complex plane, and it is closed under
multiplication and inversion.

We define the `-dimensional (compact) torus to be

T` := (S1)`

with the operation

(t1, . . . , t`) · (t ′1, . . . , t ′`) = (t1t
′
1, . . . , t`t

′
`).
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Representations of Tori

Compact Tori as Subgroups of GLn(C)

There are many subgroups of GLn(C) that can be identified with T`.

T1 = S1 is a subgroup of GL1(C) = C×.

We can identify T1 with{(
t 0
0 t

)
: t ∈ T1

}
⊂ GL2(C).

We can also identify T1 with{(
t−1 0

0 t2

)
: t ∈ T1

}
⊂ GL2(C).

We can identify T2 with{(
t1 0

0 t−1
1 t2

)
: (t1, t2) ∈ T2

}
⊂ GL2(C).
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Representations of Tori

Compact Tori as Subgroups of GLn(C)

A weight matrix A is an `× n matrix with integer entries.

It describes a specific subgroup of GLn(C) that can be identified with the
torus Tr where r is the rank of A (which we usually assume is `).

The subgroup is given by diagonal matrices with diagonal entries

(t
a1,1

1 t
a2,1

2 · · · ta`,1` , t
a1,2

1 t
a2,2

2 · · · ta`,2` , . . . , t
a1,n

1 t
a2,n

2 · · · ta`,n` )

where (t1, . . . , t`) ∈ T`.

Note that Gaussian elimination (over Z) and permuting columns of the
weight matrix doesn’t really change the subgroup, just expresses it using
different coordinates.

Up to equivalence, every subgroup of GLn(C) that can be identified with
T` can be expressed by a weight matrix.
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Representations of Tori

Compact Tori as Subgroups of GLn(C), Examples

The weight matrix (1) describes T1 as it is defined in GL1(C), i.e.
matrices (t) with |t| = 1.

The weight matrix (−2, 3) describes T1 as the subgroup{(
t−2 0

0 t3

)
: t ∈ T1

}
⊂ GL2(C).

The weight matrix

(
−2 3
0 4

)
describes T2 as the subgroup

{(
t−2
1 0
0 t3

1 t
4
2

)
: (t1, t2) ∈ T2

}
⊂ GL2(C).
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Representations of Tori

Invariants of Compact Tori

Let A be an `× n weight matrix and G the corresponding subgroup of
GLn(C).

A polynomial f ∈ C[x1, . . . , xn] is G -invariant if and only if each of its
monomial terms is invariant.

The monomial xp1
1 xp2

2 · · · x
pn
n is invariant if and only if

A


p1

p2
...
pn

 = 0.
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Representations of Tori

Invariants of Compact Tori, Examples

For A =
(
−1 1 1

)
, the monomial f (x1, x2) = x2

1x2x3 is invariant, as, for
any t1 ∈ T1,

f (t−1
1 x1, t1x2, t1x3) = (t−1

1 x1)2(t1x2)(t1x3)

= x2
1x2x3

= f (x1, x2, x3).

The monomial f (x1, x2) = x2x3 is not invariant, as

f (t−1
1 x1, t1x2, t1x3) = (t1x2)(t1x3)

= t2
1x2x3

6= f (x1, x2, x3)

unless t1 = 1.
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Representations of Tori

Invariants of Compact Tori, Examples

A =
(
−1 1 1

)
A Hilbert basis for C[x1, x2, x3]G is given by

{x1x2, x1x3},

i.e.
C[x1, x2, x3]G = C[x1x2, x1x3].
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Representations of Tori

Invariants of Compact Tori, Examples

For A =

(
−2 0 1
−3 1 0

)
, the monomial f (x1, x2, x3) = x1x

3
2x

2
3 is invariant,

as, for any (t1, t2, t3) ∈ T2,

f (t−2
1 t−3

2 x1, t2x2, t1x3) = (t−2
1 t−3

2 x1)(t2x2)3(t1x3)2

= x1x
3
2x

2
3

= f (x1, x2, x3).

A Hilbert basis for C[x1, x2, x3]G is given by

{x1x
3
2x

2
3}.
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Representations of Tori

Compact Vs. Algebraic Tori

The `-dimensional algebraic torus is (C×)` with the same operation as
the compact torus.
A weight matrix A can also be used to describe a subgroup of GLn(C) that
can be identified with (C×)` (just remove the requirement that |ti | = 1).

The weight matrix (1) describes C× as it is defined, i.e. matrices (t)
with t 6= 0.

The weight matrix (−2, 3) describes C× as the subgroup{(
t−2 0

0 t3

)
: t ∈ C×

}
⊂ GL2(C).

The weight matrix

(
−2 3
0 4

)
describes (C×)2 as the subgroup{(

t−2
1 0
0 t3

1 t
4
2

)
: (t1, t2) ∈ (C×)2

}
⊂ GL2(C).
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Representations of Tori

Compact Vs. Algebraic Tori

Let A be an `× n weight matrix.

Let G denote the corresponding subgroup of GLn(C) identified with
T`.

Let GC denote the corresponding subgroup of GLn(C) identified with
(C×)`.

The subgroup GC is a kind of algebraic completion of G called the Zariski
closure.
We say that GC is the complexification of the Lie group G , as G is a
maximal compact (closed and bounded) subgroup of GC.
It is not hard to show (using the descriptions of the matrices) that a
monomial in C[x1, . . . , xn] is G -invariant if and only if it is GC-invariant.
Hence,

C[x1, . . . , xn]G = C[x1, . . . , xn]GC .
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Representations of Tori

Compact Tori as Subgroups of GLn(R)

We can also realize T` as a subgroup of GLn(R).

For instance, S1 can be identified with the group of rotations of the plane:{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
⊂ GL2(R).

However, this is the same as S1 ≤ GL1(C), identifying (x , y) ∈ R2 with
x + iy ∈ C.

In general, any subgroup of GLn(R) that is a torus arises from a subgroup
of GLm(C) for some m ≤ n/2.
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Representations of Tori

Real Invariants of Compact Tori

If A is an `× n weight matrix describing a subgroup of GLn(C), and hence
a subgroup G of GL2n(R), we can describe the point

(z1, . . . , zn) ∈ Cn

with coordinates
(x1, . . . , xn, y1, . . . , yn) ∈ R2

as above, zj = xj + iyj , or we can use

(z1, . . . , zn, z1, . . . , zn),

where zj = xj − iyj .

The group operation in real coordinates is much easier to describe using
these coordinates.
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Representations of Tori

Real Invariants of Compact Tori

If A is an `× n weight matrix describing a subgroup of GLn(C), and hence
a subgroup G of GL2n(R), a Hilbert basis for

R[x1, . . . , xn, y1, . . . , yn]G = R[z1, . . . , zn, z1, . . . , zn]G

is the same as a Hilbert basis of

C[z1, . . . , zn, w1, . . . ,wn]H

where H is the subgroup of GL2n(C) corresponding to the weight matrix

[A| − A].

UFRJ; H.-C. Herbig, C. Seaton Computational methods symplectic quotients January 11–12th, 2016 57 / 77



Representations of Tori

Real Invariants of Compact Tori, Example

The weight matrix A =

(
−2 0 1
−3 1 0

)
describes a subgroup of GL3(C) but

also a subgroup G of GL6(R).

To find a Hilbert basis for the G -invariants, we need only find a Hilbert
basis for the invariants of the subgroup of GL6(C) associated to(

−2 0 1 | 2 0 −1
−3 1 0 | 3 −1 0

)
.
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Finding invariants using Gröbner bases

Finding invariants using Gröbner bases
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Finding invariants using Gröbner bases

Algorithm for Torus Invariants

This algorithm is from Sturmfels [5, Algorithm 1.4.5]

Given an `× n weight matrix A:

Give C[t1, . . . , t`, x1, . . . , xn, y1, . . . , yn] a monomial order ≺ such that for
any i , j , k , ti � xj � yk .

For each column j of A, define

qj = xj − yj t
a1,j

1 t
a2,j

2 · · · ta`,j` .

If qj is not a polynomial (as some ai ,j is negative), multiply by t
−ai,j
i so

that it is.

Compute the reduced Gröbner basis for 〈q1, . . . , qn〉 with respect to ≺.

The Hilbert basis of the invariants is the set of all xp1
1 · · · x

pn
n such that

xp1
1 · · · x

pn
n − yp1

1 · · · y
pn
n appears in the Gröbner basis.
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Finding invariants using Gröbner bases

Algorithm for Torus Invariants on Mathematica

On Mathematica, we can compute this Gröbner basis with the command

GroebnerBasis[ideal, variables, t-variables]

where

ideal is the list of the qj (in brackets {}),

variables is the list of the all variables (ti ’s, then xj ’s, then yj ’s, all
in brackets {}), and

t-variables is the list of ti ’s (in brackets {}).
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Finding invariants using Gröbner bases

Algorithm for Torus Invariants on Mathematica, Example

For the weight matrix
(
−2 3 5

)
, we work in C[t1, x1, x2, x3, y1, y2, y3].

We start with

q1 = x1 − y1t
−2
1 ,

q2 = x2 − y2t
3
1 ,

q3 = x3 − y3t
5
1 .

But q1 is not a polynomial, so we redefine q1 = x1t
2
1 − y1.

Hence, we enter:

GroebnerBasis[{x1*t1^2-y1, x2-y2*t1^3, x3-y3*t1^5},

{t1,x1,x2,x3,y1,y2,y3}, {t1}]
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Finding invariants using Gröbner bases

Algorithm for Torus Invariants on Mathematica, Example(
−2 3 5

)
:

The output of

GroebnerBasis[{x1*t1^2-y1, x2-y2*t1^3, x3-y3*t1^5},

{t1,x1,x2,x3,y1,y2,y3}, {t1}]

is

-x3^3 y2^5 + x2^5 y3^3, x1 x3 y2 - x2 y1 y3,

-x3^2 y1 y2^4 + x1 x2^4 y3^2, -x3 y1^2 y2^3 + x1^2 x2^3 y3,

x1^3 x2^2 - y1^3 y2^2, x1^4 x2 x3 - y1^4 y2 y3,

x1^5 x3^2 - y1^5 y3^2

Hence, the Hilbert basis is

{x3
1x

2
2 , x4

1x2x3, x5
1x

2
3}.
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Finding invariants using Gröbner bases

Algorithm for Torus Invariants on Mathematica, Example

For the weight matrix

(
−1 0 2 3
0 −2 3 4

)
, we work in

C[t1, , t2 x1, x2, x3, x4, y1, y2, y3, y4].
We start with

q1 = x1 − y1t
−1
1 ,

q2 = x2 − y2t
−2
2 ,

q3 = x3 − y3t
2
1 t

3
2 ,

q4 = x4 − y4t
3
1 t

4
2 ,

and redefine q1 = x1t1 − y1 and q2 = x2t
2
2 − y2.

Hence, we enter:

GroebnerBasis[{x1*t1 - y1, x2*t2^2 - y2,

x3 - y3*t1^2*t2^3, x4 - y4*t1^3*t2^4},

{t1, t2, x1, x2, x3, x4, y1, y2, y3, y4},

{t1, t2}]
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Finding invariants using Gröbner bases

Algorithm for Torus Invariants on Mathematica, Example(
−1 0 2 3
0 −2 3 4

)
:

The output of

GroebnerBasis[{x1*t1 - y1, x2*t2^2 - y2,

x3 - y3*t1^2*t2^3, x4 - y4*t1^3*t2^4},

{t1, t2, x1, x2, x3, x4, y1, y2, y3, y4}, {t1, t2}]

is

-x4^4 y2 y3^6 + x2 x3^6 y4^4, x1 x4^3 y3^4 - x3^4 y1 y4^3,

-x4 y1 y2 y3^2 + x1 x2 x3^2 y4,

x1^2 x2 x4^2 y3^2 - x3^2 y1^2 y2 y4^2,

x1^3 x2^2 x4 - y1^3 y2^2 y4,

x1^4 x2^3 x3^2 - y1^4 y2^3 y3^2

Hence, the Hilbert basis is

{x3
1x

2
2x4, x4

1x
3
2x

2
3}.
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Finding invariants using Gröbner bases

Algorithm for Torus Invariants on Mathematica, Example

For the weight matrix
(
−1 −1 2 7

)
, we use

q1 = x1t1 − y1,

q2 = x2t1 − y2,

q3 = x3 − y3t
2
1 ,

q4 = x4 − y4t
7
1 .

The input is

GroebnerBasis[{

x1*t1^1 - y1, x2*t1^1 - y2,

x3 - y3*t1^2, x4 - y4*t1^7},

{t1, x1, x2, x3, x4, y1, y2, y3, y4}, {t1}]
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Finding invariants using Gröbner bases

Algorithm for Torus Invariants on Mathematica, Example(
−1 −1 2 7

)
:

The output is
-x4^2 y3^7 + x3^7 y4^2, x2 x4 y3^3 - x3^3 y2 y4, -x4 y2 y3^4 + x2 x3^4 y4,

x2^2 x3 - y2^2 y3, x2^3 x4 y3^2 - x3^2 y2^3 y4, x2^5 x4 y3 - x3 y2^5 y4,

x2^7 x4 - y2^7 y4, -x2 y1 + x1 y2, x1 x4 y3^3 - x3^3 y1 y4,

-x4 y1 y3^4 + x1 x3^4 y4, x1 x2 x3 - y1 y2 y3,

x1 x2^2 x4 y3^2 - x3^2 y1 y2^2 y4, x1 x2^4 x4 y3 - x3 y1 y2^4 y4,

x1 x2^6 x4 - y1 y2^6 y4, x1^2 x3 - y1^2 y3,

x1^2 x2 x4 y3^2 - x3^2 y1^2 y2 y4, x1^2 x2^3 x4 y3 - x3 y1^2 y2^3 y4,

x1^2 x2^5 x4 - y1^2 y2^5 y4, x1^3 x4 y3^2 - x3^2 y1^3 y4,

x1^3 x2^2 x4 y3 - x3 y1^3 y2^2 y4, x1^3 x2^4 x4 - y1^3 y2^4 y4,

x1^4 x2 x4 y3 - x3 y1^4 y2 y4, x1^4 x2^3 x4 - y1^4 y2^3 y4,

x1^5 x4 y3 - x3 y1^5 y4, x1^5 x2^2 x4 - y1^5 y2^2 y4,

x1^6 x2 x4 - y1^6 y2 y4, x1^7 x4 - y1^7 y4

Hence, the Hilbert basis is

{x2
2x3, x7

2x4, x1x2x3, x1x
6
2x4, x2

1x3, x2
1x

5
2x4,

x3
1x

4
2x4, x4

1x
3
2x4, x5

1x
2
2x4, x6

1x2x4, x7
1x4}.
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Finding invariants using Gröbner bases

Other Kinds of Groups

There are similar algorithms using Gröbner bases to compute Hilbert bases
of invariants of finite groups, general compact Lie groups, etc.

See Cox–Little–O’Shea [2], Derksen and Kemper [3], and Sturmfels [5].
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Finding Relations Using Gröbner Bases

Finding Relations Using Gröbner Bases
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Finding Relations Using Gröbner Bases

Algorithm for Relations

This algorithm is from Cox–Little–O’Shea [2, Proposition 7.4.3].

Given generators f1, . . . , fr for a subalgebra of K[x1, . . . , xn] (e.g. a Hilbert
basis):

Give K[x1, . . . , xn, y1, . . . , yr ] a monomial order such that for each i , j ,
xi � yj .

Compute a Gröbner basis for the ideal

I = 〈f1 − y1, f2 − y2, . . . , fr − yr 〉.

A Gröbner basis for the ideal of relations of 〈f1, . . . , fr 〉 is given by
intersecting the result with K[y1, . . . , ym], i.e. removing the elements that
involve the xi .
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Finding Relations Using Gröbner Bases

Algorithm for Relations on Mathematica

On Mathematica, we can compute this Gröbner basis with the command:

GroebnerBasis[ideal, variables, x-variables]

where

ideal is the list of fj − yj , j = 1, . . . , r (in brackets {}),

variables is the list of the all variables (xj ’s, then yj ’s, all in
brackets {}), and

x-variables is the list of xj ’s (in brackets {}).
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Finding Relations Using Gröbner Bases

Algorithm for Relations on Mathematica, Example

Recall that the weight matrix
(
−2 3 5

)
had Hilbert basis

{x3
1x

2
2 , x4

1x2x3, x5
1x

2
3}.

We work in C[x1, x2, x3, y1, y2, y3] and enter:

GroebnerBasis[{

x1^3*x2^2-y1, x1^4*x2*x3-y2, x1^5*x3^2-y3},

{x1,x2,x3,y1,y2,y3}, {x1,x2,x3}]

The output is:

-y2^2 + y1 y3

So the ideal of relations is
〈f1f3 − f 2

2 〉.
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Finding Relations Using Gröbner Bases

Algorithm for Relations on Mathematica, Example

Recall that the weight matrix

(
−1 0 2 3
0 −2 3 4

)
had Hilbert basis

{x3
1x

2
2x4, x4

1x
3
2x

2
3}.

We work in C[x1, x2, x3, x4, y1, y2] and enter:

GroebnerBasis[{

x1^3*x2^2^2*x4-y1, x1^4*x2^3*x3^2-y2},

{x1,x2,x3,x4,y1,y2}, {x1,x2,x3,x4}]

The output is empty, so there are no relations.
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Finding Relations Using Gröbner Bases

Algorithm for Relations on Mathematica, Example

Recall that the weight matrix
(
−1 −1 2 7

)
had Hilbert basis

{x2
2x3, x7

2x4, x1x2x3, x1x
6
2x4, x2

1x3, x2
1x

5
2x4,

x3
1x

4
2x4, x4

1x
3
2x4, x5

1x
2
2x4, x6

1x2x4, x7
1x4}.

We work in C[x1, x2, x3, x4, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11] and
enter:

GroebnerBasis[{

x2^2*x3-y1, x2^7*x4-y2, x1*x2*x3-y3,

x1*x2^6*x4-y4, x1^2*x3-y5,

x1^2*x2^5*x4-y6, x1^3*x2^4*x4-y7,

x1^4*x2^3*x4-y8, x1^5*x2^2*x4-y9,

x1^6*x2*x4-y10, x1^7*x4-y11

},

{x1,x2,x3,x4,y1,y2,y3,y4,y5,y6,y7,

y8,y9,y10,y11}, {x1,x2,x3,x4}]
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Algorithm for Relations on Mathematica, Example

The output is

-y10^2 + y11 y9, y11 y8 - y10 y9, y10 y8 - y9^2,

y11 y7 - y9^2, y10 y7 - y8 y9, -y8^2 + y7 y9,

y11 y6 - y8 y9, y10 y6 - y8^2, -y7 y8 + y6 y9,

-y7^2 + y6 y8, y11 y4 - y8^2, y10 y4 - y7 y8,

-y7^2 + y4 y9, -y6 y7 + y4 y8, -y6^2 + y4 y7,

y11 y3 - y10 y5, y10 y3 - y5 y9, -y5 y8 + y3 y9,

-y5 y7 + y3 y8, -y5 y6 + y3 y7, -y4 y5 + y3 y6,

y11 y2 - y7 y8, y10 y2 - y7^2, -y6 y7 + y2 y9,

-y6^2 + y2 y8, -y4 y6 + y2 y7, -y4^2 + y2 y6,

-y3 y4 + y2 y5, y1 y11 - y5 y9, y1 y10 - y5 y8,

-y5 y7 + y1 y9, -y5 y6 + y1 y8, -y4 y5 +

y1 y7, -y3 y4 + y1 y6, -y3^2 + y1 y5,

-y2 y3 + y1 y4
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Algorithm for Relations on Mathematica, Example

Hence, there are 36 relations.

− f 2
10 + f11f9, f11f8 − f10f9, f10f8 − f 2

9 , f11f7 − f 2
9 , f10f7 − f8f9,

− f 2
8 + f7f9, f11f6 − f8f9, f10f6 − f 2

8 , −f7f8 + f6f9, −f 2
7 + f6f8,

f11f4 − f 2
8 , f10f4 − f7f8, −f 2

7 + f4f9, −f6f7 + f4f8, −f 2
6 + f4f7,

f11f3 − f10f5, f10f3 − f5f9, −f5f8 + f3f9, −f5f7 + f3f8, −f5f6 + f3f7,

− f4f5 + f3f6, f11f2 − f7f8, f10f2 − f 2
7 , −f6f7 + f2f9, −f 2

6 + f2f8,

− f4f6 + f2f7, −f 2
4 + f2f6, −f3f4 + f2f5, f1f11 − f5f9, f1f10 − f5f8,

− f5f7 + f1f9, −f5f6 + f1f8, −f4f5 + f1f7, −f3f4 + f1f6, −f 2
3 + f1f5,

− f2f3 + f1f4
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Thank you!
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