Groupoid actions on graphs and *C**-correspondences (preliminary report)

Valentin Deaconu

University of Nevada, Reno

Groupoidfest 2015-AMS meeting University of Memphis, 17 October 2015

Outline

- Let the groupoid G act on a C^* -correspondence \mathcal{H} over the $C_0(G^0)$ -algebra A.
- By the universal property G acts on the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{H}}$ which also becomes a $C_0(G^0)$ -algebra.
- We study the crossed product $\mathcal{O}_{\mathcal{H}} \rtimes G$ and the fixed point algebra $\mathcal{O}_{\mathcal{H}}^G$.
- Using intertwiners, we define the Doplicher-Roberts algebra O_ρ of a representation ρ of a groupoid G on H and prove that under certain conditions O^G_H is isomorphic to O_ρ.
- Suppose *G* has finite isotropy groups. If *G* acts on a discrete locally finite graph *E*, we prove that the crossed product $C^*(E) \rtimes G$ is stably isomorphic to a locally finite graph algebra.
- We illustrate with some examples.

Groupoid actions

- We assume that G is a locally compact Hausdorff groupoid with unit space G^0 and range and source maps $r, s : G \to G^0$.
- Recall that *G* acts on a locally compact space *X* if there are a continuous, open surjection $\pi : X \to G^0$ and a continuous map

$$G * X \to X$$
, write $(g, x) \mapsto g \cdot x$,

where $G * X = \{(g, x) \in G \times X \mid s(g) = \pi(x)\}$, such that

$$\pi(g \cdot x) = r(g), \ g_2 \cdot (g_1 \cdot x) = (g_2g_1) \cdot x, \ \pi(x) \cdot x = x.$$

- For example, if *G* is an étale groupoid, then *G* acts on its unit space *G*⁰. *G* also acts on itself by left multiplication.
- One can talk about the set of fixed points X^G , stabilizers $G(x) = \{g \in G \mid g \cdot x = x\}$, orbits $Gx = G * \{x\}$, orbit space X/G etc.
- Note that G(x) is a subgroup of the isotropy group G_u^u , where $u = \pi(x)$.

- Sometimes a graph has only local symmetries, which motivates the introduction of groupoid actions on graphs.
- Let $E = (E^0, E^1, r, s)$ be a topological graph, i.e. E^0, E^1 are locally compact spaces with $r, s : E^1 \to E^0$ continuous maps and *s* a local homeomorphism.
- We say that the groupoid G acts on E if G acts on both E^0, E^1 in a compatible way.
- This means that there are maps $\pi^0: E^0 \to G^0, \pi^1: E^1 \to G^0$ and maps $G * E^0 \to E^0, G * E^1 \to E^1$ as above such that

$$s(g \cdot e) = g \cdot s(e), r(g \cdot e) = g \cdot r(e)$$
 for $e \in E^1$ and $g \in G$.

Examples

• Let *E* be the graph with $E^0 = \{v_1, v_2\}$ and $E^1 = \{a_1, a_2, a_3, b, c, d_1, d_2\}$ where $s(a_i) = r(a_i) = s(b) = r(c) = v_1, i = 1, 2, 3, s(d_j) = r(d_j) = r(b) = s(c) = v_2, j = 1, 2.$

• The group bundle $G = S_3 \sqcup S_2$ with $G^0 = \{u_1, u_2\}$ acts on E by permuting the edges a_i for i = 1, 2, 3 and d_j for j = 1, 2 and fixing b, c. Here $\pi^0 : E^0 \to G^0, \pi^0(v_i) = u_i, i = 1, 2, \pi^1 : E^1 \to G^0, \pi^1 = \pi^0 \circ s$.

Examples

• Let *E* be the graph with $E^0 = \{v_1, v_2\}$ and $E^1 = \{a_1, a_2, b, c, d_1, d_2\}$ where $s(a_i) = r(a_i) = s(b) = r(c) = v_1, i = 1, 2, s(d_j) = r(d_j) = r(b) = s(c) = v_2, j = 1, 2.$

• Let *G* be the transitive groupoid with $G^0 = \{u_1, u_2\}$ with isotropy groups $G_{u_i}^{u_i} = \{u_i, t_i\} \cong \mathbb{Z}_2, i = 1, 2$, so $t_i^2 = u_i$. Let $x \in G$ be such that $s(x) = x^{-1}x = u_1, r(x) = xx^{-1} = u_2$ and $xt_1x^{-1} = t_2$.

• Let G act on E such that

$$x \cdot v_1 = v_2, t_1 \cdot a_1 = a_2, t_2 \cdot d_1 = d_2, x \cdot a_i = d_i, i = 1, 2, x \cdot b = c.$$

Here $\pi^0 : E^0 \to G^0, \pi^0(v_i) = u_i$ and $\pi^1 : E^1 \to G^0, \pi^1 = \pi^0 \circ s$.

- Let *X* be a locally compact Hausdorff space. Recall that a $C_0(X)$ -algebra is a C^* -algebra *A* together with a homomorphism $\theta : C_0(X) \to ZM(A)$ such that $\theta(C_0(X))A = A$.
- For each $x \in X$ we can define the fiber A_x as A/I_xA where $I_x = \{f \in C_0(X) : f(x) = 0\}.$
- We say that the groupoid *G* with unit space G^0 acts on a C^* -algebra *A* if *A* is a $C_0(G^0)$ -algebra and for each $g \in G$ there is an isomorphism $\alpha_g : A_{s(g)} \to A_{r(g)}$ such that if $(g_1, g_2) \in G^{(2)}$ we have $\alpha_{g_1g_2} = \alpha_{g_1} \circ \alpha_{g_2}$.
- We also write $g \cdot a$ for $\alpha_g(a)$.

Groupoid representations on C^* -correspondences

- Let *A* be a $C_0(X)$ -algebra and let \mathcal{H} be a Hilbert *A*-module. We define the fibers $\mathcal{H}_x := \mathcal{H} \otimes_A A_x$. For $T \in \mathcal{L}(\mathcal{H})$, let $T_x \in \mathcal{L}(\mathcal{H}_x)$ be $T \otimes 1_{A_x}$.
- The set Iso(\mathcal{H}) of \mathbb{C} -linear isomorphisms between fibers becomes a groupoid with unit space *X*.
- If *H* is a C*-correspondence over the C₀(X)-algebra A and G is a groupoid with G⁰ = X acting on A, a representation of G on *H* is given by a groupoid homomorphism ρ : G →Iso(*H*) where ρ(g) : *H_{s(g)}* → *H_{r(g)}* with ρ(g) = I if g ∈ G⁰, such that

$$\langle \rho(g)\xi,\rho(g)\eta\rangle=g\cdot\langle\xi,\eta\rangle,$$

 $\rho(g)(\xi a)=(\rho(g)\xi)(g\cdot a),\;\rho(g)(a\xi)=(g\cdot a)(\rho(g)\xi).$

- If *G* is a locally compact groupoid with Haar system, then it acts on the $C_0(G^0)-C_0(G^0)$ *C*^{*}-correspondence with fibers $L^2(G^u, \lambda^u)$ via the left regular representation.
- If the groupoid G acts on a graph E then G acts on the associated $C_0(E^0)$ - $C_0(E^0)$ correspondence \mathcal{H}_E . Subgroupoids of Iso (\mathcal{H}_E) (with the same unit space) are candidates to act on $C^*(E)$.

Doplicher-Roberts algebras

- Let the groupoid G act on a A-A C*-correspondence \mathcal{H} via the representation $\rho: G \to \text{Iso}(\mathcal{H})$.
- Consider the tensor power $\rho^n : G \to \operatorname{Iso}(\mathcal{H}^{\otimes n})$ and let

$$(\rho^m,\rho^n)=\{T:\mathcal{H}^{\otimes n}\to\mathcal{H}^{\otimes m}\mid T_{r(g)}\rho^n(g)=\rho^m(g)T_{s(g)}\}.$$

- The linear span ${}^{0}\mathcal{O}_{\rho}$ of $\bigcup_{m,n} (\rho^{m}, \rho^{n})$ has a natural multiplication and involution, after identifying *T* with $T \otimes I$.
- We assume that

 $||T|| = \sup\{||\pi(T)||: \pi \text{ is a } *-\text{rep of } {}^0\mathcal{O}_{\rho} \text{ on a Hilbert space}\} < \infty.$

• The Doplicher-Roberts algebra \mathcal{O}_{ρ} is defined as the C^* -closure of ${}^0\mathcal{O}_{\rho}$.

Doplicher-Roberts algebras

- Theorem. Let *H* be a full finite projective C*-correspondence over A and assume that the left multiplication A → L(H) is injective. If G is a groupoid acting on *H* via ρ : G → Iso(H), then the Doplicher-Roberts algebra O_ρ is well defined and it is isomorphic to the fixed point algebra O^G_H.
- **Proof.** It is known that L(H) ≅ K(H) and that O_H is isomorphic to the C*-algebra generated by the span of ⋃_{m,n≥0} K(H^{⊗m}, H^{⊗n}) after we

identify *T* with $T \otimes I$.

• Note that G acts on $\mathcal{K}(\mathcal{H}^{\otimes n}, \mathcal{H}^{\otimes m})$ by

$$(g \cdot T_{r(g)})(\xi) = \rho^m(g)T_{s(g)}(\rho^n(g^{-1})\xi)$$

and the fixed point algebra is (ρ^m, ρ^n) .

• It follows that ${}^{0}\mathcal{O}_{\rho} \subseteq \mathcal{O}_{\mathcal{H}}$ and that \mathcal{O}_{ρ} is isomorphic to $\mathcal{O}_{\mathcal{H}}^{G}$.

Crossed products of C^* -correspondences

where

- Let *G* be a locally compact groupoid with Haar system acting on a $C_0(G^0)$ -algebra *A*. If \mathcal{H} is a *A*-*A C*^{*}-correspondence, then a representation of *G* on \mathcal{H} determines an action on the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{H}}$.
- The crossed product $\mathcal{H} \rtimes G = \mathcal{H} \otimes_A (A \rtimes G)$ becomes a C^* -correspondence over $A \rtimes G$ using the operations

$$\begin{split} \langle \xi, \eta \rangle(h) &= \int g^{-1} \cdot \langle \xi(g), \eta(gh) \rangle_{r(g)} d\lambda^{r(h)}(g), \\ (\xi \cdot f)(h) &= \int \xi(g) (g \cdot f(g^{-1}h)) d\lambda^{r(h)}(g), \\ (f \cdot \xi)(h) &= \int f(g) \cdot (g \cdot \xi(g^{-1}h)) d\lambda^{r(h)}(g), \\ \xi \in C_c(G, \mathcal{H}), f \in C_c(G, A). \end{split}$$

Finite isotropy groupoid actions

- Lemma. Suppose *A* and *B* are SME *C**-algebras with *A*-*B* imprimitivity bimodule \mathcal{X} .
- If \mathcal{H} is a C^* -correspondence over A, then $\mathcal{H}' = \mathcal{X}^* \otimes_A \mathcal{H} \otimes_A \mathcal{X}$ is a C^* -correspondence over B such that $\mathcal{O}_{\mathcal{H}}$ and $\mathcal{O}_{\mathcal{H}'}$ are SME.
- **Theorem**. Given a locally finite discrete graph *E* and a groupoid *G* with finite isotropy groups acting on *E*, the crossed product $C^*(E) \rtimes G$ is SME to a graph C^* -algebra, where the number of vertices is the cardinality of the spectrum of $C_0(E^0) \rtimes G$.
- **Proof**. Recall that separable non-degenerate C^* -correspondences over $C_0(V)$ with V at most countable determine a discrete graph.
- We use orbits and stabilizers to decompose $\mathcal{H}_E \rtimes G$ over the C^* -algebra $C_0(E^0) \rtimes G$ which is SME to a commutative C^* -algebra.
- It follows that C^{*}(E) ⋊ G is isomorphic to the C^{*}-algebra of a graph of (minimal) C^{*}-correspondences, hence SME to a graph C^{*}-algebra.

Graphs of C^* -correspondences

- Given a discrete graph $E = (E^0, E^1, r, s)$, associate to each vertex $v \in E^0$ a C^* -algebra A_v and to each edge $e \in E^1$ a nondegenerate $A_{r(e)}$ - $A_{s(e)}$ C^* -correspondence \mathcal{H}_e .
- This way we obtain an *E*-system of *C*^{*}-correspondences or a graph of *C*^{*}-correspondences.
- The *C**-algebra associated to this graph of *C**-correspondences is $\mathcal{O}_{\mathcal{H}}$, where $\mathcal{H} = \bigoplus_{e \in E^1} \mathcal{H}_e$ becomes a *C**-correspondence over $A = \bigoplus_{v \in E^0} A_v$ in a natural way.
- **Example**. Assume we have a C^* -correspondence \mathcal{H} over a unital C^* -algebra A such that A decomposes into a direct sum $A_1 \oplus A_2 \oplus \cdots \oplus A_n$.
- If p_j is the identity of A_j , then \mathcal{H} decomposes into a direct sum $\bigoplus_{i,j} p_i \mathcal{H} p_j$ and we can construct a graph of C^* -correspondences with nvertices $\{v_1, ..., v_n\}$, by assigning the C^* -algebra A_i at v_i and the C^* -correspondence $p_i \mathcal{H} p_j \neq 0$ at the edge joining v_j with v_i .

The C^* -correspondence of a groupoid representation

- Let *G* be a locally compact groupoid with a Haar system λ and let $A = C^*(G)$.
- Given a Hilbert bundle *H* over the unit space *G*⁰ and a representation *ρ* : *G* →Iso(*H*), denote by *C_c*(*G*, *r***H*) the space of continuous sections with compact support of the pull-back bundle *r***H*.
- We define the left and right actions of $C_c(G)$ on $C_c(G, r^*\mathcal{H})$ by

$$f\xi(g) = \int f(h)\rho(h)\xi(h^{-1}g)d\lambda^{r(g)}(h),$$

$$\xi f(g) = \int \xi(gh)f(h^{-1})d\lambda^{s(g)}(h),$$

and inner product

$$\langle \xi, \eta \rangle(g) = \int \langle \xi(h^{-1}), \eta(h^{-1}g) \rangle_{s(h)} d\lambda^{r(g)}(h)$$

for $f \in C_c(G)$ and $\xi, \eta \in C_c(G, r^*\mathcal{H})$.

The completion *M* of C_c(G, r**H*) becomes an A-A correspondence, where the left action of C_c(G) extends to a *-homomorphism
A → L_A(*M*). A similar construction could be done using A = C^{*}_r(G).

The C^* -correspondence of a groupoid representation

- Given representations ρ_i: G →Iso(H_i) for i = 1, 2, one may consider the tensor product representation ρ₁ ⊗ ρ₂: G →Iso(H₁ ⊗ H₂) and the C*-correspondence of ρ₁ ⊗ ρ₂ is the composition of the C*-correspondences for ρ₁, ρ₂.
- For $G = G^0 = X$ compact and \mathcal{V} a vector bundles over X, this construction provides a C(X)-C(X) corespondence \mathcal{M} such that the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{M}}$ is a continuous field of Cuntz algebras.
- For *G* a compact group and $\rho: G \to U(n)$ a unitary representation, the $C^*(G)-C^*(G)$ correspondence \mathcal{M} is isomorphic to $\mathbb{C}^n \otimes C^*(G)$ and $\mathcal{O}_{\mathcal{M}}$ is isomorphic to $\mathcal{O}_n \rtimes G$.