Groupoid actions on graphs and C^{*}-correspondences (preliminary report)

Valentin Deaconu
University of Nevada, Reno
Groupoidfest 2015-AMS meeting
University of Memphis, 17 October 2015

Outline

- Let the groupoid G act on a C^{*}-correspondence \mathcal{H} over the $C_{0}\left(G^{0}\right)$-algebra A.
- By the universal property G acts on the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{H}}$ which also becomes a $C_{0}\left(G^{0}\right)$-algebra.
- We study the crossed product $\mathcal{O}_{\mathcal{H}} \rtimes G$ and the fixed point algebra $\mathcal{O}_{\mathcal{H}}^{G}$.
- Using intertwiners, we define the Doplicher-Roberts algebra \mathcal{O}_{ρ} of a representation ρ of a groupoid G on \mathcal{H} and prove that under certain conditions $\mathcal{O}_{\mathcal{H}}^{G}$ is isomorphic to \mathcal{O}_{ρ}.
- Suppose G has finite isotropy groups. If G acts on a discrete locally finite graph E, we prove that the crossed product $C^{*}(E) \rtimes G$ is stably isomorphic to a locally finite graph algebra.
- We illustrate with some examples.

Groupoid actions

- We assume that G is a locally compact Hausdorff groupoid with unit space G^{0} and range and source maps $r, s: G \rightarrow G^{0}$.
- Recall that G acts on a locally compact space X if there are a continuous, open surjection $\pi: X \rightarrow G^{0}$ and a continuous map

$$
G * X \rightarrow X, \quad \text { write } \quad(g, x) \mapsto g \cdot x
$$

where $G * X=\{(g, x) \in G \times X \mid s(g)=\pi(x)\}$, such that

$$
\pi(g \cdot x)=r(g), \quad g_{2} \cdot\left(g_{1} \cdot x\right)=\left(g_{2} g_{1}\right) \cdot x, \quad \pi(x) \cdot x=x
$$

- For example, if G is an étale groupoid, then G acts on its unit space G^{0}. G also acts on itself by left multiplication.
- One can talk about the set of fixed points X^{G}, stabilizers $G(x)=\{g \in G \mid g \cdot x=x\}$, orbits $G x=G *\{x\}$, orbit space X / G etc.
- Note that $G(x)$ is a subgroup of the isotropy group G_{u}^{u}, where $u=\pi(x)$.

Groupoid actions

- Sometimes a graph has only local symmetries, which motivates the introduction of groupoid actions on graphs.
- Let $E=\left(E^{0}, E^{1}, r, s\right)$ be a topological graph, i.e. E^{0}, E^{1} are locally compact spaces with $r, s: E^{1} \rightarrow E^{0}$ continuous maps and s a local homeomorphism.
- We say that the groupoid G acts on E if G acts on both E^{0}, E^{1} in a compatible way.
- This means that there are maps $\pi^{0}: E^{0} \rightarrow G^{0}, \pi^{1}: E^{1} \rightarrow G^{0}$ and maps $G * E^{0} \rightarrow E^{0}, G * E^{1} \rightarrow E^{1}$ as above such that

$$
s(g \cdot e)=g \cdot s(e), r(g \cdot e)=g \cdot r(e) \quad \text { for } e \in E^{1} \text { and } g \in G .
$$

Examples

- Let E be the graph with $E^{0}=\left\{v_{1}, v_{2}\right\}$ and $E^{1}=\left\{a_{1}, a_{2}, a_{3}, b, c, d_{1}, d_{2}\right\}$ where $s\left(a_{i}\right)=r\left(a_{i}\right)=s(b)=r(c)=v_{1}, i=1,2,3, s\left(d_{j}\right)=r\left(d_{j}\right)=$ $r(b)=s(c)=v_{2}, j=1,2$.

- The group bundle $G=S_{3} \sqcup S_{2}$ with $G^{0}=\left\{u_{1}, u_{2}\right\}$ acts on E by permuting the edges a_{i} for $i=1,2,3$ and d_{j} for $j=1,2$ and fixing b, c. Here $\pi^{0}: E^{0} \rightarrow G^{0}, \pi^{0}\left(v_{i}\right)=u_{i}, i=1,2, \pi^{1}: E^{1} \rightarrow G^{0}, \pi^{1}=\pi^{0} \circ s$.

Examples

- Let E be the graph with $E^{0}=\left\{v_{1}, v_{2}\right\}$ and $E^{1}=\left\{a_{1}, a_{2}, b, c, d_{1}, d_{2}\right\}$ where $s\left(a_{i}\right)=r\left(a_{i}\right)=s(b)=r(c)=v_{1}, i=1,2, s\left(d_{j}\right)=r\left(d_{j}\right)=$ $r(b)=s(c)=v_{2}, j=1,2$.

- Let G be the transitive groupoid with $G^{0}=\left\{u_{1}, u_{2}\right\}$ with isotropy groups $G_{u_{i}}^{u_{i}}=\left\{u_{i}, t_{i}\right\} \cong \mathbb{Z}_{2}, i=1,2$, so $t_{i}^{2}=u_{i}$. Let $x \in G$ be such that $s(x)=x^{-1} x=u_{1}, r(x)=x x^{-1}=u_{2}$ and $x t_{1} x^{-1}=t_{2}$.
- Let G act on E such that

$$
x \cdot v_{1}=v_{2}, t_{1} \cdot a_{1}=a_{2}, t_{2} \cdot d_{1}=d_{2}, x \cdot a_{i}=d_{i}, i=1,2, x \cdot b=c .
$$

Here $\pi^{0}: E^{0} \rightarrow G^{0}, \pi^{0}\left(v_{i}\right)=u_{i}$ and $\pi^{1}: E^{1} \rightarrow G^{0}, \pi^{1}=\pi^{0} \circ s$.

Groupoid actions on C^{*}-algebras

- Let X be a locally compact Hausdorff space. Recall that a $C_{0}(X)$-algebra is a C^{*}-algebra A together with a homomorphism $\theta: C_{0}(X) \rightarrow Z M(A)$ such that $\theta\left(C_{0}(X)\right) A=A$.
- For each $x \in X$ we can define the fiber A_{x} as $A / I_{x} A$ where $I_{x}=\left\{f \in C_{0}(X): f(x)=0\right\}$.
- We say that the groupoid G with unit space G^{0} acts on a C^{*}-algebra A if A is a $C_{0}\left(G^{0}\right)$-algebra and for each $g \in G$ there is an isomorphism $\alpha_{g}: A_{s(g)} \rightarrow A_{r(g)}$ such that if $\left(g_{1}, g_{2}\right) \in G^{(2)}$ we have $\alpha_{g_{1} g_{2}}=\alpha_{g_{1}} \circ \alpha_{g_{2}}$.
- We also write $g \cdot a$ for $\alpha_{g}(a)$.

Groupoid representations on C^{*}-correspondences

- Let A be a $C_{0}(X)$-algebra and let \mathcal{H} be a Hilbert A-module. We define the fibers $\mathcal{H}_{x}:=\mathcal{H} \otimes_{A} A_{x}$. For $T \in \mathcal{L}(\mathcal{H})$, let $T_{x} \in \mathcal{L}\left(\mathcal{H}_{x}\right)$ be $T \otimes 1_{A_{x}}$.
- The set $\operatorname{Iso}(\mathcal{H})$ of \mathbb{C}-linear isomorphisms between fibers becomes a groupoid with unit space X.
- If \mathcal{H} is a C^{*}-correspondence over the $C_{0}(X)$-algebra A and G is a groupoid with $G^{0}=X$ acting on A, a representation of G on \mathcal{H} is given by a groupoid homomorphism $\rho: G \rightarrow \operatorname{Iso}(\mathcal{H})$ where $\rho(g): \mathcal{H}_{s(g)} \rightarrow \mathcal{H}_{r(g)}$ with $\rho(g)=I$ if $g \in G^{0}$, such that

$$
\begin{gathered}
\langle\rho(g) \xi, \rho(g) \eta\rangle=g \cdot\langle\xi, \eta\rangle \\
\rho(g)(\xi a)=(\rho(g) \xi)(g \cdot a), \rho(g)(a \xi)=(g \cdot a)(\rho(g) \xi)
\end{gathered}
$$

- If G is a locally compact groupoid with Haar system, then it acts on the $C_{0}\left(G^{0}\right)-C_{0}\left(G^{0}\right) C^{*}$-correspondence with fibers $L^{2}\left(G^{u}, \lambda^{u}\right)$ via the left regular representation.
- If the groupoid G acts on a graph E then G acts on the associated $C_{0}\left(E^{0}\right)-C_{0}\left(E^{0}\right)$ correspondence \mathcal{H}_{E}. Subgroupoids of $\operatorname{Iso}\left(\mathcal{H}_{E}\right)$ (with the same unit space) are candidates to act on $C^{*}(E)$.

Doplicher-Roberts algebras

- Let the groupoid G act on a $A-A C^{*}$-correspondence \mathcal{H} via the representation $\rho: G \rightarrow \operatorname{Iso}(\mathcal{H})$.
- Consider the tensor power $\rho^{n}: G \rightarrow \operatorname{Iso}\left(\mathcal{H}^{\otimes n}\right)$ and let

$$
\left(\rho^{m}, \rho^{n}\right)=\left\{T: \mathcal{H}^{\otimes n} \rightarrow \mathcal{H}^{\otimes m} \mid T_{r(g)} \rho^{n}(g)=\rho^{m}(g) T_{s(g)}\right\} .
$$

- The linear span ${ }^{0} \mathcal{O}_{\rho}$ of $\bigcup\left(\rho^{m}, \rho^{n}\right)$ has a natural multiplication and m, n involution, after identifying T with $T \otimes I$.
- We assume that

$$
\|T\|=\sup \left\{\|\pi(T)\|: \pi \text { is a } *-\text { rep of }{ }^{0} \mathcal{O}_{\rho} \text { on a Hilbert space }\right\}<\infty .
$$

- The Doplicher-Roberts algebra \mathcal{O}_{ρ} is defined as the C^{*}-closure of ${ }^{0} \mathcal{O}_{\rho}$.

Doplicher-Roberts algebras

- Theorem. Let \mathcal{H} be a full finite projective C^{*}-correspondence over A and assume that the left multiplication $A \rightarrow \mathcal{L}(\mathcal{H})$ is injective. If G is a groupoid acting on \mathcal{H} via $\rho: G \rightarrow \operatorname{Iso}(\mathcal{H})$, then the Doplicher-Roberts algebra \mathcal{O}_{ρ} is well defined and it is isomorphic to the fixed point algebra $\mathcal{O}_{\mathcal{H}}^{G}$.
- Proof. It is known that $\mathcal{L}(\mathcal{H}) \cong \mathcal{K}(\mathcal{H})$ and that $\mathcal{O}_{\mathcal{H}}$ is isomorphic to the C^{*}-algebra generated by the span of $\bigcup \mathcal{K}\left(\mathcal{H}^{\otimes m}, \mathcal{H}^{\otimes n}\right)$ after we identify T with $T \otimes I$.
- Note that G acts on $\mathcal{K}\left(\mathcal{H}^{\otimes n}, \mathcal{H}^{\otimes m}\right)$ by

$$
\left(g \cdot T_{r(g)}\right)(\xi)=\rho^{m}(g) T_{s(g)}\left(\rho^{n}\left(g^{-1}\right) \xi\right)
$$

and the fixed point algebra is $\left(\rho^{m}, \rho^{n}\right)$.

- It follows that ${ }^{0} \mathcal{O}_{\rho} \subseteq \mathcal{O}_{\mathcal{H}}$ and that \mathcal{O}_{ρ} is isomorphic to $\mathcal{O}_{\mathcal{H}}^{G}$.

Crossed products of C^{*}-correspondences

- Let G be a locally compact groupoid with Haar system acting on a $C_{0}\left(G^{0}\right)$-algebra A. If \mathcal{H} is a $A-A C^{*}$-correspondence, then a representation of G on \mathcal{H} determines an action on the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{H}}$.
- The crossed product $\mathcal{H} \rtimes G=\mathcal{H} \otimes_{A}(A \rtimes G)$ becomes a C^{*}-correspondence over $A \rtimes G$ using the operations

$$
\begin{aligned}
\langle\xi, \eta\rangle(h) & =\int g^{-1} \cdot\langle\xi(g), \eta(g h)\rangle_{r(g)} d \lambda^{r(h)}(g), \\
(\xi \cdot f)(h) & =\int \xi(g)\left(g \cdot f\left(g^{-1} h\right)\right) d \lambda^{r(h)}(g), \\
(f \cdot \xi)(h) & =\int f(g) \cdot\left(g \cdot \xi\left(g^{-1} h\right)\right) d \lambda^{r(h)}(g),
\end{aligned}
$$

where $\xi \in C_{c}(G, \mathcal{H}), f \in C_{c}(G, A)$.

Finite isotropy groupoid actions

- Lemma. Suppose A and B are SME C^{*}-algebras with $A-B$ imprimitivity bimodule \mathcal{X}.
- If \mathcal{H} is a C^{*}-correspondence over A, then $\mathcal{H}^{\prime}=\mathcal{X}^{*} \otimes_{A} \mathcal{H} \otimes_{A} \mathcal{X}$ is a C^{*}-correspondence over B such that $\mathcal{O}_{\mathcal{H}}$ and $\mathcal{O}_{\mathcal{H}^{\prime}}$ are SME.
- Theorem. Given a locally finite discrete graph E and a groupoid G with finite isotropy groups acting on E, the crossed product $C^{*}(E) \rtimes G$ is SME to a graph C^{*}-algebra, where the number of vertices is the cardinality of the spectrum of $C_{0}\left(E^{0}\right) \rtimes G$.
- Proof. Recall that separable non-degenerate C^{*}-correspondences over $C_{0}(V)$ with V at most countable determine a discrete graph.
- We use orbits and stabilizers to decompose $\mathcal{H}_{E} \rtimes G$ over the C^{*}-algebra $C_{0}\left(E^{0}\right) \rtimes G$ which is SME to a commutative C^{*}-algebra.
- It follows that $C^{*}(E) \rtimes G$ is isomorphic to the C^{*}-algebra of a graph of (minimal) C^{*}-correspondences, hence SME to a graph C^{*}-algebra.

Graphs of C^{*}-correspondences

- Given a discrete graph $E=\left(E^{0}, E^{1}, r, s\right)$, associate to each vertex $v \in E^{0}$ a C^{*}-algebra A_{v} and to each edge $e \in E^{1}$ a nondegenerate $A_{r(e)}-A_{s(e)} C^{*}$-correspondence \mathcal{H}_{e}.
- This way we obtain an E-system of C^{*}-correspondences or a graph of C^{*}-correspondences.
- The C^{*}-algebra associated to this graph of C^{*}-correspondences is $\mathcal{O}_{\mathcal{H}}$, where $\mathcal{H}=\bigoplus_{e \in E^{1}} \mathcal{H}_{e}$ becomes a C^{*}-correspondence over $A=\bigoplus_{v \in E^{0}} A_{v}$ in a natural way.
- Example. Assume we have a C^{*}-correspondence \mathcal{H} over a unital C^{*}-algebra A such that A decomposes into a direct sum $A_{1} \oplus A_{2} \oplus \cdots \oplus A_{n}$.
- If p_{j} is the identity of A_{j}, then \mathcal{H} decomposes into a direct sum $\bigoplus_{i, j} p_{i} \mathcal{H} p_{j}$ and we can construct a graph of C^{*}-correspondences with n vertices $\left\{v_{1}, \ldots, v_{n}\right\}$, by assigning the C^{*}-algebra A_{i} at v_{i} and the C^{*}-correspondence $p_{i} \mathcal{H} p_{j} \neq 0$ at the edge joining v_{j} with v_{i}.

The C^{*}-correspondence of a groupoid representation

- Let G be a locally compact groupoid with a Haar system λ and let $A=C^{*}(G)$.
- Given a Hilbert bundle \mathcal{H} over the unit space G^{0} and a representation $\rho: G \rightarrow \operatorname{Iso}(\mathcal{H})$, denote by $C_{c}\left(G, r^{*} \mathcal{H}\right)$ the space of continuous sections with compact support of the pull-back bundle $r^{*} \mathcal{H}$.
- We define the left and right actions of $C_{c}(G)$ on $C_{c}\left(G, r^{*} \mathcal{H}\right)$ by

$$
\begin{gathered}
f \xi(g)=\int f(h) \rho(h) \xi\left(h^{-1} g\right) d \lambda^{r^{(g)}}(h), \\
\xi f(g)=\int \xi(g h) f\left(h^{-1}\right) d \lambda^{s(g)}(h),
\end{gathered}
$$

and inner product

$$
\langle\xi, \eta\rangle(g)=\int\left\langle\xi\left(h^{-1}\right), \eta\left(h^{-1} g\right)\right\rangle_{s(h)} d \lambda^{r(g)}(h)
$$

for $f \in C_{c}(G)$ and $\xi, \eta \in C_{c}\left(G, r^{*} \mathcal{H}\right)$.

- The completion \mathcal{M} of $C_{c}\left(G, r^{*} \mathcal{H}\right)$ becomes an $A-A$ correspondence, where the left action of $C_{c}(G)$ extends to a $*$-homomorphsim $A \rightarrow \mathcal{L}_{A}(\mathcal{M})$. A similar construction could be done using $A=C_{r}^{*}(G)$.

The C^{*}-correspondence of a groupoid representation

- Given representations $\rho_{i}: G \rightarrow \operatorname{Iso}\left(\mathcal{H}_{i}\right)$ for $i=1,2$, one may consider the tensor product representation $\rho_{1} \otimes \rho_{2}: G \rightarrow \operatorname{Iso}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ and the C^{*}-correspondence of $\rho_{1} \otimes \rho_{2}$ is the composition of the
C^{*}-correspondences for ρ_{1}, ρ_{2}.
- For $G=G^{0}=X$ compact and \mathcal{V} a vector bundles over X, this construction provides a $C(X)-C(X)$ corespondence \mathcal{M} such that the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{M}}$ is a continuous field of Cuntz algebras.
- For G a compact group and $\rho: G \rightarrow U(n)$ a unitary representation, the $C^{*}(G)-C^{*}(G)$ correspondence \mathcal{M} is isomorphic to $\mathbb{C}^{n} \otimes C^{*}(G)$ and $\mathcal{O}_{\mathcal{M}}$ is isomorphic to $\mathcal{O}_{n} \rtimes G$.

