AMS Meeting, U. of Memphis, TN October 17-18, 2015

Orbifold versus Manifold Spectral Theory

Special Session on The Analysis, Geometry, and Topology of Groupoids - GroupoidFest 2015

Carla Parvati Farsi, University of Colorado/Boulder joint work with Emily Proctor and Christopher Seaton Preliminary Report

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

Table of Contents

- Orbifolds, Isospectrality and **Γ**-Isospectralityy
 - Orbifolds and Isospectrality
 - Orbifolds and Γ-Isospectrality
- 2 Hodge Decomposition for Orbifolds with Boundary

4 1 1 4 1 1 1

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Isospectrality

Orbifolds, Isospectrality and **F**-Isospectrality

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

(日) (同) (三) (三)

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

An orbifold $M \rtimes G$ is a topological space that is locally modeled on $\tilde{U} \rtimes K$ where K is a finite subgroup of the orthogonal group O(n) acting on $\tilde{U} \subset \mathbb{R}^n$.

イロト 不得下 イヨト イヨト

Orbifolds, Isospectrality and **F**-Isospectralityy

-Orbifolds and Isospectrality

Orbifolds and Isospectrality

General Question:

How does the presence of singular points affect the Laplace spectrum? What happens to the spectrum when we pass form a smooth manifold to an orbifold by introducing some singular points? Or, conversely, what happens to the spectrum when we delete some singular points?

Some History:

A D A D A D A

Orbifolds, Isospectrality and **F**-Isospectralityy

-Orbifolds and Isospectrality

Orbifolds and Isospectrality

General Question:

How does the presence of singular points affect the Laplace spectrum? What happens to the spectrum when we pass form a smooth manifold to an orbifold by introducing some singular points? Or, conversely, what happens to the spectrum when we delete some singular points?

Some History:

• F. 01 The volume is an orbifold spectral invariant.

A D A D A D A

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Isospectrality

Orbifolds and Isospectrality

General Question:

How does the presence of singular points affect the Laplace spectrum? What happens to the spectrum when we pass form a smooth manifold to an orbifold by introducing some singular points? Or, conversely, what happens to the spectrum when we delete some singular points?

Some History:

• F. 01 The volume is an orbifold spectral invariant.

• Stanhope '03 Inverse Orbifold Spectrum under lower Ricci Curvature Bounds.

イロト イポト イヨト イヨト

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Isospectrality

Orbifolds and Isospectrality

General Question:

How does the presence of singular points affect the Laplace spectrum? What happens to the spectrum when we pass form a smooth manifold to an orbifold by introducing some singular points? Or, conversely, what happens to the spectrum when we delete some singular points?

Some History:

• F. 01 The volume is an orbifold spectral invariant.

• Stanhope '03 Inverse Orbifold Spectrum under lower Ricci Curvature Bounds.

イロト イポト イヨト イヨト

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

- Dryden '04, '05 and Proctor-Stanhope '08: 2-dimensional Orbifold Spectral Theory.
- Dryden-Gordon-Greenwald-Webb '08
 - How singularities affect heat kernel expansion coefficients.

- 4 回 ト - 4 回 ト

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

- Dryden '04, '05 and Proctor-Stanhope '08: 2-dimensional Orbifold Spectral Theory.
- Dryden-Gordon-Greenwald-Webb '08
 - How singularities affect heat kernel expansion coefficients.
 - Families of mutually isospectral Riemannian orbifolds

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

- Dryden '04, '05 and Proctor-Stanhope '08: 2-dimensional Orbifold Spectral Theory.
- Dryden-Gordon-Greenwald-Webb '08
 - How singularities affect heat kernel expansion coefficients.
 - Families of mutually isospectral Riemannian orbifolds such that each contains an isotropy group which is not in any of the others.

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

• Dryden '04, '05 and Proctor-Stanhope '08: 2-dimensional Orbifold Spectral Theory.

• Dryden-Gordon-Greenwald-Webb '08

- How singularities affect heat kernel expansion coefficients.
- Families of mutually isospectral Riemannian orbifolds such that each contains an isotropy group which is not in any of the others.
- Isotropy groups of corresponding orbifolds have the same order, but are nonisomorphic.

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

• Dryden '04, '05 and Proctor-Stanhope '08: 2-dimensional Orbifold Spectral Theory.

• Dryden-Gordon-Greenwald-Webb '08

- How singularities affect heat kernel expansion coefficients.
- Families of mutually isospectral Riemannian orbifolds such that each contains an isotropy group which is not in any of the others.
- Isotropy groups of corresponding orbifolds have the same order, but are nonisomorphic.
- Rossetti-Schueth-Weilandt '07
 - Examples of isospectral connected orbifolds with different maximal isotropy orders.

イロト イポト イヨト イヨト

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

• Dryden '04, '05 and Proctor-Stanhope '08: 2-dimensional Orbifold Spectral Theory.

• Dryden-Gordon-Greenwald-Webb '08

- How singularities affect heat kernel expansion coefficients.
- Families of mutually isospectral Riemannian orbifolds such that each contains an isotropy group which is not in any of the others.
- Isotropy groups of corresponding orbifolds have the same order, but are nonisomorphic.

• Rossetti-Schueth-Weilandt '07

• Examples of isospectral connected orbifolds with different maximal isotropy orders.

イロト イポト イヨト イヨト

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

• Proctor -Stanhope '08

- Orbifold quotient of a nilmanifold: Isospectral family of orbifold metrics.
- Pairs of compact Riemannian orbifolds which are isospectral for the Laplace operator on functions

- 4 同 6 4 日 6 4 日 6

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

- Proctor -Stanhope '08
 - Orbifold quotient of a nilmanifold: Isospectral family of orbifold metrics.
 - Pairs of compact Riemannian orbifolds which are isospectral for the Laplace operator on functions
 - via DeTurck and Gordon's Sunada method.

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

- Proctor -Stanhope '08
 - Orbifold quotient of a nilmanifold: Isospectral family of orbifold metrics.
 - Pairs of compact Riemannian orbifolds which are isospectral for the Laplace operator on functions
 - via DeTurck and Gordon's Sunada method.
- Shams UI Bari '09: Isospectral, nonisometric Orbifold Lens Spaces via generalization of direct method of Ikeda.

- 4 同 6 4 日 6 4 日 6

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Isospectrality

Orbifolds and Isospectrality

- Proctor -Stanhope '08
 - Orbifold quotient of a nilmanifold: Isospectral family of orbifold metrics.
 - Pairs of compact Riemannian orbifolds which are isospectral for the Laplace operator on functions
 - via DeTurck and Gordon's Sunada method.
- Shams UI Bari '09: Isospectral, nonisometric Orbifold Lens Spaces via generalization of direct method of Ikeda.

- 4 週 ト - 4 三 ト - 4 三 ト

Orbifolds, Isospectrality and **F**-Isospectralityy

Crbifolds and Isospectrality

Orbifolds and Isospectrality

- Abreu-Dryden-Freitas-Godinho and Weilandt '10: Isospectral, nonisometric Complex Projective Weighted Spaces.
 - These are first example of non global quotient orbifolds.
 - Isospectral metrics obtained by a generalization of Schüth's version of the torus method.
- Dryden, Guillemin, Sena-Dias Inverse Spectral Theorems for Toric Orbifolds '14, '11 and Symplectic Toric Orbifolds '09.

- 4 同 6 4 日 6 4 日 6

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Isospectrality

Orbifolds and Isospectrality

- Abreu-Dryden-Freitas-Godinho and Weilandt '10: Isospectral, nonisometric Complex Projective Weighted Spaces.
 - These are first example of non global quotient orbifolds.
 - Isospectral metrics obtained by a generalization of Schüth's version of the torus method.
- Dryden, Guillemin, Sena-Dias Inverse Spectral Theorems for Toric Orbifolds '14, '11 and Symplectic Toric Orbifolds '09.

くほと くほと くほと

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

The Orbifold **F**-Spectrum

- In Farsi-Proctor-Seaton '14 We introduce the Γ-Extension of the Spectrum of the Laplacian of a Riemannian Orbifold, where Γ is a finitely generated discrete group.
- This extension, called the Γ-Spectrum, is the union of the Laplace spectra of the Γ-sectors of the orbifold.

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

The Orbifold **F**-Spectrum

- In Farsi-Proctor-Seaton '14 We introduce the Γ-Extension of the Spectrum of the Laplacian of a Riemannian Orbifold, where Γ is a finitely generated discrete group.
- This extension, called the Γ-Spectrum, is the union of the Laplace spectra of the Γ-sectors of the orbifold.
- Hence the Γ-Spectrum constitutes a Riemannian invariant that is directly related to the singular set of the orbifold.

- 4 週 ト - 4 三 ト - 4 三 ト

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

The Orbifold **F**-Spectrum

- In Farsi-Proctor-Seaton '14 We introduce the Γ-Extension of the Spectrum of the Laplacian of a Riemannian Orbifold, where Γ is a finitely generated discrete group.
- This extension, called the Γ-Spectrum, is the union of the Laplace spectra of the Γ-sectors of the orbifold.
- Hence the Γ-Spectrum constitutes a Riemannian invariant that is directly related to the singular set of the orbifold.

向下 イヨト イヨト

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

The Orbifold Γ-Spectrum

• We prove a Γ -version of Sunada's Theorem.

(日) (同) (三) (三)

3

10 / 24

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

The Orbifold **F**-Spectrum

• We prove a Γ -version of Sunada's Theorem.

 We compare the Spectra and Γ- spectra of known examples of isospectral pairs and families of orbifolds.

・ 何 ト ・ ヨ ト ・ ヨ ト

10 / 24

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

The Orbifold **F**-Spectrum

- We prove a Γ -version of Sunada's Theorem.
- We compare the Spectra and Γ- spectra of known examples of isospectral pairs and families of orbifolds.
- We demonstrate that almost all examples of isospectral orbifolds in the literature are not Γ-isospectral.

10 / 24

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

The Orbifold **F**-Spectrum

- We prove a Γ -version of Sunada's Theorem.
- We compare the Spectra and Γ- spectra of known examples of isospectral pairs and families of orbifolds.
- We demonstrate that almost all examples of isospectral orbifolds in the literature are not Γ-isospectral.

一日、

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

Isospectral Does Not Imply **F**-Isospectral

Theorem

(F., Proctor, Seaton '14; TMAS) The following orbifold pairs are isospectral but not Γ -isospectral

• The examples of Shams-Stanhope-Webb;

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

くほと くほと くほと

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

Isospectral Does Not Imply Γ-Isospectral

Theorem

(F., Proctor, Seaton '14; TMAS) The following orbifold pairs are isospectral but not Γ -isospectral

- The examples of Shams-Stanhope-Webb;
- The homogeneous spaces examples of Rossetti-Schüth-Wielandt;

Orbifolds, Isospectrality and **F**-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

Isospectral Does Not Imply Γ-Isospectral

Theorem

(F., Proctor, Seaton '14; TMAS) The following orbifold pairs are isospectral but not Γ -isospectral

- The examples of Shams-Stanhope-Webb;
- The homogeneous spaces examples of Rossetti-Schüth-Wielandt;
- The flat space examples of Rossetti-Schüth-Wielandt.

通 ト イヨ ト イヨト

—Orbifolds, Isospectrality and Γ-Isospectralityy

└─ Orbifolds and Γ-Isospectrality

Isospectral Does Not Imply Γ-Isospectral

Theorem

(F., Proctor, Seaton '14; TMAS) The following orbifold pairs are isospectral but not Γ -isospectral

- The examples of Shams-Stanhope-Webb;
- The homogeneous spaces examples of Rossetti-Schüth-Wielandt;
- The flat space examples of Rossetti-Schüth-Wielandt.

通 ト イヨ ト イヨト

Hodge Theory for Orbifolds with Boundary

Important middle step in the proof of our results on connected sums is the Hodge Decomposition for Orbifolds with Boundary.

First some terminology. Let M be an orbifold with a manifold boundary. Its Laplacian Δ on funsctions (and also on *p*-forms) is defined to be

 $\Delta = d\delta + \delta d,$

where $\delta = (-1)^{np+n+1} * d*$ is the formal adjoint of d. (We actually take a suitable standard L^2 -closure of these operators.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Hodge Theory for Orbifolds with Boundary

Important middle step in the proof of our results on connected sums is the Hodge Decomposition for Orbifolds with Boundary.

First some terminology. Let M be an orbifold with a manifold boundary. Its Laplacian Δ on funsctions (and also on *p*-forms) is defined to be

$$\Delta = d\delta + \delta d,$$

where $\delta = (-1)^{np+n+1} * d*$ is the formal adjoint of d. (We actually take a suitable standard L^2 -closure of these operators.)

A differential form ω restricted to the boundary can be decomposed into tangential and normal components

 $\omega_{tan}, \omega_{nor}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Hodge Theory for Orbifolds with Boundary

Important middle step in the proof of our results on connected sums is the Hodge Decomposition for Orbifolds with Boundary.

First some terminology. Let M be an orbifold with a manifold boundary. Its Laplacian Δ on funsctions (and also on *p*-forms) is defined to be

$$\Delta = d\delta + \delta d,$$

where $\delta = (-1)^{np+n+1} * d*$ is the formal adjoint of d. (We actually take a suitable standard L^2 -closure of these operators.)

A differential form ω restricted to the boundary can be decomposed into tangential and normal components

 $\omega_{tan}, \omega_{nor}$

Hodge Theory for Orbifolds with Boundary

- Corresponding to Absolute Boundary Conditions (normal boundary component equal to zero) and the Relative Boundary Conditions (tangential boundary component equal to zero) we take a suitable Laplacian.
- Specifically, define d_c and δ_c by

$$Dom(d_c) := \{ \omega \in C_0^{\infty} \Lambda^p(M) \},\$$

$$Dom(d_c) := \{ \omega \in C^{\infty} \Lambda^p(M) | \omega, d\omega \in L^2(M) \},\$$

$$Dom(\delta_c) := \{ \omega \in C_0^{\infty} \Lambda^p(M) \},\$$

$$Dom(\delta) := \{ \omega \in C^{\infty} \Lambda^p(M) | \omega, \delta\omega \in L^2(M) \}.$$
(modulo closing them up in the L²-sense)

イロト 不得下 イヨト イヨト 二日

Hodge Theory for Orbifolds with Boundary

- Corresponding to Absolute Boundary Conditions (normal boundary component equal to zero) and the Relative Boundary Conditions (tangential boundary component equal to zero) we take a suitable Laplacian.
- Specifically, define d_c and δ_c by

$$Dom(d_c) := \{ \omega \in C_0^{\infty} \Lambda^p(M) \},\$$
$$Dom(d_c) := \{ \omega \in C^{\infty} \Lambda^p(M) | \omega, d\omega \in L^2(M) \},\$$
$$Dom(\delta_c) := \{ \omega \in C_0^{\infty} \Lambda^p(M) \},\$$
$$Dom(\delta) := \{ \omega \in C^{\infty} \Lambda^p(M) | \omega, \delta\omega \in L^2(M) \}.$$

(modulo closing them up in the L^2 -sense)

(人間) とうき くうとう う
Hodge Theory for Orbifolds with Boundary

We then take as Laplacian

• For the Absolute Boundary Conditions:

$$\Delta_D = d_c \delta + \delta d_c$$

• For the Relative Boundary Conditions:

$$\Delta_N = d\delta_c + \delta_c d.$$

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

イロト 不得下 イヨト イヨト

Hodge Theory for Orbifolds with Boundary

- We then take as Laplacian
 - For the Absolute Boundary Conditions:

 $\Delta_D = d_c \delta + \delta d_c$

• For the Relative Boundary Conditions:

$$\Delta_N = d\delta_c + \delta_c d.$$

• Δ_D and Δ_N are unbounded and self-adjoint.

- 4 同 6 4 日 6 4 日 6

Hodge Theory for Orbifolds with Boundary

- We then take as Laplacian
 - For the Absolute Boundary Conditions:

 $\Delta_D = d_c \delta + \delta d_c$

• For the Relative Boundary Conditions:

$$\Delta_N = d\delta_c + \delta_c d.$$

Δ_D and Δ_N are unbounded and self-adjoint.
In the closed manifold case, Δ = Δ_N = Δ_D.

くほと くほと くほと

Hodge Theory for Orbifolds with Boundary

- We then take as Laplacian
 - For the Absolute Boundary Conditions:

$$\Delta_D = d_c \delta + \delta d_c$$

• For the Relative Boundary Conditions:

$$\Delta_N = d\delta_c + \delta_c d.$$

- Δ_D and Δ_N are unbounded and self-adjoint.
- In the closed manifold case, $\Delta = \Delta_N = \Delta_D$.

 In the case of boundary, it is enough to study the spectrum of one of these operators since the Hodge * sends the eigenspaces of Δ_D to the ones of Δ_N.

October 22, 2015

14 / 24

Hodge Theory for Orbifolds with Boundary

- We then take as Laplacian
 - For the Absolute Boundary Conditions:

$$\Delta_D = d_c \delta + \delta d_c$$

• For the Relative Boundary Conditions:

$$\Delta_N = d\delta_c + \delta_c d.$$

- Δ_D and Δ_N are unbounded and self-adjoint.
- In the closed manifold case, $\Delta = \Delta_N = \Delta_D$.
- In the case of boundary, it is enough to study the spectrum of one of these operators since the Hodge * sends the eigenspaces of Δ_D to the ones of Δ_N.

Hodge Theory for Orbifolds with Boundary

Important middle step in the proof of our results on connected sums is the Hodge Decomposition for Orbifolds with Boundary.

Theorem

(Hodge Decomposition for Orbifolds with Boundary, FPS '15) Let M be an orbifold with a manifold boundary with Absolute or Relative boundary conditions. Then

Hodge Theory for Orbifolds with Boundary

Important middle step in the proof of our results on connected sums is the Hodge Decomposition for Orbifolds with Boundary.

Theorem

(Hodge Decomposition for Orbifolds with Boundary, FPS '15) Let M be an orbifold with a manifold boundary with Absolute or Relative boundary conditions. Then

 $\mathcal{H}^p(M)\cong H^p(M,\mathbb{R})$

where $\mathcal{H}^{p}(M)$ denote the harmonic forms (with say relative boundary conditions), and $H^{p}(M, \mathbb{R})$ is the orbifold de Rham cohomology.

Hodge Theory for Orbifolds with Boundary

Important middle step in the proof of our results on connected sums is the Hodge Decomposition for Orbifolds with Boundary.

Theorem

(Hodge Decomposition for Orbifolds with Boundary, FPS '15) Let M be an orbifold with a manifold boundary with Absolute or Relative boundary conditions. Then

$$\mathcal{H}^p(M)\cong H^p(M,\mathbb{R})$$

where $\mathcal{H}^{p}(M)$ denote the harmonic forms (with say relative boundary conditions), and $H^{p}(M, \mathbb{R})$ is the orbifold de Rham cohomology.

Hodge Theory for Orbifolds with Boundary

Moreover

• Ever L^2 form ω can be decomposed as

 $\omega = \mathbf{d}\alpha \oplus \mathbf{h} \oplus \delta_{\mathbf{c}}\beta,$

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory Octo

Hodge Theory for Orbifolds with Boundary

Moreover

• Ever L^2 form ω can be decomposed as

 $\omega = \mathbf{d}\alpha \oplus \mathbf{h} \oplus \delta_{\mathbf{c}}\beta,$

with $\alpha \in Dom(d)$, $\beta \in Dom(\delta_c)$ and $\Delta_N h = 0$.

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Hodge Theory for Orbifolds with Boundary

Moreover

• Ever L^2 form ω can be decomposed as

 $\omega = \mathbf{d}\alpha \oplus \mathbf{h} \oplus \delta_{\mathbf{c}}\beta,$

with $\alpha \in Dom(d)$, $\beta \in Dom(\delta_c)$ and $\Delta_N h = 0$. Eigenforms form an orthonormal basis of $L^2(M)$.

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

(本間) (本語) (本語) (語)

Hodge Theory for Orbifolds with Boundary

Moreover

• Ever L^2 form ω can be decomposed as

 $\omega = \mathbf{d}\alpha \oplus \mathbf{h} \oplus \delta_{\mathbf{c}}\beta,$

with $\alpha \in Dom(d)$, $\beta \in Dom(\delta_c)$ and $\Delta_N h = 0$.

• Eigenforms form an orthonormal basis of $L^2(M)$.

Hodge Theory for Orbifolds with Boundary

In addition

• If $E(\lambda)^p$ is the space of eigenforms of degree p with eigenvalue Λ

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Hodge Theory for Orbifolds with Boundary

In addition

If E(λ)^p is the space of eigenforms of degree p with eigenvalue Λ
 and E(λ)^p_d, E(λ)^p_δ are the spaces of eigenforms which are exact and co-exact (respectively) then

Hodge Theory for Orbifolds with Boundary

In addition

- If $E(\lambda)^p$ is the space of eigenforms of degree p with eigenvalue Λ
- and $E(\lambda)_d^p$, $E(\lambda)_{\delta}^p$ are the spaces of eigenforms which are exact and co-exact (respectively) then

$$E(\lambda)^{p} = E(\lambda)^{p}_{d} \oplus E(\lambda)^{p}_{\delta}$$
$$E(\lambda)^{p}_{d} = dE(\lambda)^{p-1}_{\delta},$$
$$E(\lambda)^{p}_{\delta} = \delta E(\lambda)^{p+1}_{d}$$

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

向下 イヨト イヨト ニヨ

Hodge Theory for Orbifolds with Boundary

In addition

- If $E(\lambda)^p$ is the space of eigenforms of degree p with eigenvalue Λ
- and $E(\lambda)_d^p$, $E(\lambda)_{\delta}^p$ are the spaces of eigenforms which are exact and co-exact (respectively) then

$$E(\lambda)^{p} = E(\lambda)^{p}_{d} \oplus E(\lambda)^{p}_{\delta},$$
$$E(\lambda)^{p}_{d} = dE(\lambda)^{p-1}_{\delta},$$
$$E(\lambda)^{p}_{\delta} = \delta E(\lambda)^{p+1}_{d}$$

$$(d\omega, d\omega) = (\delta d\omega, \omega) = (\Delta \omega, \omega) = \lambda(\omega, \omega).$$

Hodge Theory for Orbifolds with Boundary

In addition

- If $E(\lambda)^p$ is the space of eigenforms of degree p with eigenvalue Λ
- and $E(\lambda)_d^p$, $E(\lambda)_{\delta}^p$ are the spaces of eigenforms which are exact and co-exact (respectively) then

$$E(\lambda)^{p} = E(\lambda)^{p}_{d} \oplus E(\lambda)^{p}_{\delta},$$
$$E(\lambda)^{p}_{d} = dE(\lambda)^{p-1}_{\delta},$$
$$E(\lambda)^{p}_{\delta} = \delta E(\lambda)^{p+1}_{d}$$

Moreover

$$(d\omega, d\omega) = (\delta d\omega, \omega) = (\Delta \omega, \omega) = \lambda(\omega, \omega).$$

Hodge Theory for Orbifolds with Boundary

In addition

- If $E(\lambda)^p$ is the space of eigenforms of degree p with eigenvalue Λ
- and $E(\lambda)_d^p$, $E(\lambda)_{\delta}^p$ are the spaces of eigenforms which are exact and co-exact (respectively) then

$$E(\lambda)^{p} = E(\lambda)^{p}_{d} \oplus E(\lambda)^{p}_{\delta},$$
$$E(\lambda)^{p}_{d} = dE(\lambda)^{p-1}_{\delta},$$
$$E(\lambda)^{p}_{\delta} = \delta E(\lambda)^{p+1}_{d}$$

Moreover

$$(d\omega, d\omega) = (\delta d\omega, \omega) = (\Delta \omega, \omega) = \lambda(\omega, \omega).$$

Local Analysis and Connected Sums-Introduction

- We want knowledge about the eigenvalues of the Laplacian acting on functions under collapsings of disks of orbifolds, and connected sums.
- When we have bounded sectional curvature and diameter, Fukaya proved that the eigenvalues converge to those of the limit space with respect to the measured Gromov-Hausdorff topology.

くほと くほと くほと

Local Analysis and Connected Sums-Introduction

- We want knowledge about the eigenvalues of the Laplacian acting on functions under collapsings of disks of orbifolds, and connected sums.
- When we have bounded sectional curvature and diameter, Fukaya proved that the eigenvalues converge to those of the limit space with respect to the measured Gromov-Hausdorff topology.
- Shioya extended it for a family of Alexandrov spaces with curvature bounded below.

・ 同 ト ・ ヨ ト ・ ヨ ト

Local Analysis and Connected Sums-Introduction

- We want knowledge about the eigenvalues of the Laplacian acting on functions under collapsings of disks of orbifolds, and connected sums.
- When we have bounded sectional curvature and diameter, Fukaya proved that the eigenvalues converge to those of the limit space with respect to the measured Gromov-Hausdorff topology.
- Shioya extended it for a family of Alexandrov spaces with curvature bounded below.
- However, if the curvature is not bounded below, the eigenvalues do not converge in general.

- 3

Local Analysis and Connected Sums-Introduction

- We want knowledge about the eigenvalues of the Laplacian acting on functions under collapsings of disks of orbifolds, and connected sums.
- When we have bounded sectional curvature and diameter, Fukaya proved that the eigenvalues converge to those of the limit space with respect to the measured Gromov-Hausdorff topology.
- Shioya extended it for a family of Alexandrov spaces with curvature bounded below.
- However, if the curvature is not bounded below, the eigenvalues do not converge in general.
- We are interested in the cases of the convergence of the eigenvalues for a family of orbifolds without curvature bounded below.

3

Local Analysis and Connected Sums-Introduction

- We want knowledge about the eigenvalues of the Laplacian acting on functions under collapsings of disks of orbifolds, and connected sums.
- When we have bounded sectional curvature and diameter, Fukaya proved that the eigenvalues converge to those of the limit space with respect to the measured Gromov-Hausdorff topology.
- Shioya extended it for a family of Alexandrov spaces with curvature bounded below.
- However, if the curvature is not bounded below, the eigenvalues do not converge in general.
- We are interested in the cases of the convergence of the eigenvalues for a family of orbifolds without curvature bounded below.

伺下 イヨト イヨト

Local Analysis and Connected Sums-Introduction

- For the manifold case the convergence of the eigenvalues have been studied by Chavel and Feldman, Anné and Colbois, etc. Colbois and Courtois, and Takahashi.
- Their result requires no conditions on curvature.

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

・ 同 ト ・ 三 ト ・ 三 ト

Local Analysis and Connected Sums-Introduction

- For the manifold case the convergence of the eigenvalues have been studied by Chavel and Feldman, Anné and Colbois, etc. Colbois and Courtois, and Takahashi.
- Their result requires no conditions on curvature.

過 ト イヨト イヨト

Local Analysis and Connected Sums-The Set-Up

- We studied the convergence of the eigenvalues of the Laplacian when one side of a connected sum an orbifold collapses to a point.
- We generalized to orbifolds the methods that Anné, Colbois and Takahashi used for manifolds.

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

イロト 不得下 イヨト イヨト

Local Analysis and Connected Sums-The Set-Up

- We studied the convergence of the eigenvalues of the Laplacian when one side of a connected sum an orbifold collapses to a point.
- We generalized to orbifolds the methods that Anné, Colbois and Takahashi used for manifolds.

くほと くほと くほと

Local Analysis and Connected Sums-The Set-Up

- We studied the convergence of the eigenvalues of the Laplacian when one side of a connected sum an orbifold collapses to a point.
- We generalized to orbifolds the methods that Anné, Colbois and Takahashi used for manifolds.

くほと くほと くほと

- Let (M_i, g_i), i = 1, 2, be connected oriented closed orbifolds of the same dimension. Let M_i(r_i) to be M_i with a ball of radius r_i removed.
- Let $M := M_1(\epsilon) \cup M_2(1)$, pasted along the boundary with with the piecewise smooth metric as below.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

- Let (M_i, g_i), i = 1, 2, be connected oriented closed orbifolds of the same dimension. Let M_i(r_i) to be M_i with a ball of radius r_i removed.
- Let M := M₁(ϵ) ∪ M₂(1), pasted along the boundary with with the piecewise smooth metric as below.

$$g_{\epsilon} := \begin{cases} g_1 & \text{on } M_1(\epsilon) \\ \epsilon^2 g_2 & \text{on } M_2(1) \end{cases}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

- Let (M_i, g_i), i = 1, 2, be connected oriented closed orbifolds of the same dimension. Let M_i(r_i) to be M_i with a ball of radius r_i removed.
- Let $M := M_1(\epsilon) \cup M_2(1)$, pasted along the boundary with with the piecewise smooth metric as below.

$$g_{\epsilon} := \left\{ egin{array}{cc} g_1 & \textit{on } M_1(\epsilon) \ \epsilon^2 g_2 & \textit{on } M_2(1) \end{array}
ight.$$

• The Sobolev space (of functions) H^1 on M is defined to be the set of pairs of functions on $M_1(\epsilon)$ and $M_2(1)$ that agree, together with the normal components of their differentials, on the boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Let (M_i, g_i), i = 1, 2, be connected oriented closed orbifolds of the same dimension. Let M_i(r_i) to be M_i with a ball of radius r_i removed.
- Let $M := M_1(\epsilon) \cup M_2(1)$, pasted along the boundary with with the piecewise smooth metric as below.

$$g_{\epsilon} := \left\{ egin{array}{cc} g_1 & \textit{on } M_1(\epsilon) \ \epsilon^2 g_2 & \textit{on } M_2(1) \end{array}
ight.$$

- The Sobolev space (of functions) H^1 on M is defined to be the set of pairs of functions on $M_1(\epsilon)$ and $M_2(1)$ that agree, together with the normal components of their differentials, on the boundary.
- The Laplace operator on (M, g_ϵ) is defined as the pair of the Laplace operators on M₁(ϵ) and M₂(1).

October 22, 2015

21 / 24

- Let (M_i, g_i) , i = 1, 2, be connected oriented closed orbifolds of the same dimension. Let $M_i(r_i)$ to be M_i with a ball of radius r_i removed.
- Let $M := M_1(\epsilon) \cup M_2(1)$, pasted along the boundary with with the piecewise smooth metric as below.

$$g_{\epsilon} := \left\{ egin{array}{cc} g_1 & \textit{on } M_1(\epsilon) \ \epsilon^2 g_2 & \textit{on } M_2(1) \end{array}
ight.$$

- The Sobolev space (of functions) H^1 on M is defined to be the set of pairs of functions on $M_1(\epsilon)$ and $M_2(1)$ that agree, together with the normal components of their differentials, on the boundary.
- The Laplace operator on (M, g_ε) is defined as the pair of the Laplace operators on M₁(ε) and M₂(1).

Local Analysis and Connected Sums-The Set-Up

• We denote the eigenvalues of the Laplacian on functions on (M,g_ϵ) by

 $0 = \lambda_0(M, g_{\epsilon}) < \lambda_1(M, g_{\epsilon}) \leq \ldots \leq \lambda_k(M, g_{\epsilon}) \leq \ldots,$

• We denote the eigenvalues of the Laplacian on functions on (M, g_{ϵ}) by $0 = \lambda_0(M, g_{\epsilon}) < \lambda_1(M, g_{\epsilon}) \leq ... \leq \lambda_k(M, g_{\epsilon}) \leq ...,$

• Since (M_1, g_1) is a closed orbifold, we can define its Laplacian and spectrum on functions, denoted by

 Δ_1 ; $0 = \lambda_0(M_1, g_1) < \lambda_1(M_1, g_1) \le ... \le \lambda_k(M_1, g_1) \le ...$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• We denote the eigenvalues of the Laplacian on functions on (M, g_{ϵ}) by $0 = \lambda_0(M, g_{\epsilon}) < \lambda_1(M, g_{\epsilon}) \leq ... \leq \lambda_k(M, g_{\epsilon}) \leq ...,$

• Since (M_1, g_1) is a closed orbifold, we can define its Laplacian and spectrum on functions, denoted by

$$\Delta_1; \ 0 = \lambda_0(M_1, g_1) < \lambda_1(M_1, g_1) \le ... \le \lambda_k(M_1, g_1) \le$$

• Then, we obtain the following theorem

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの
Local Analysis and Connected Sums-The Set-Up

• We denote the eigenvalues of the Laplacian on functions on (M, g_{ϵ}) by $0 = \lambda_0(M, g_{\epsilon}) < \lambda_1(M, g_{\epsilon}) \leq ... \leq \lambda_k(M, g_{\epsilon}) \leq ...,$

• Since (M_1, g_1) is a closed orbifold, we can define its Laplacian and spectrum on functions, denoted by

$$\Delta_1$$
; $0 = \lambda_0(M_1, g_1) < \lambda_1(M_1, g_1) \le ... \le \lambda_k(M_1, g_1) \le ...$

• Then, we obtain the following theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Local Spectral Analysis: Connected Sums

Local Analysis and Connected Sums-The Results

Theorem

(Convergence of Eigenvalues of Laplacian, FPS '15) For all k = 0, 1, ..., we have

$$\lim_{\epsilon\to 0}\lambda_k(M,g_\epsilon)=\lambda_k(M_1,g_1).$$

For each k, this is uniformly convergent with respect to j = 0, 1, ..., k.

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory October

< 同 ト く ヨ ト く ヨ ト

Local Spectral Analysis: Connected Sums

Local Analysis and Connected Sums-The Results

Theorem

(Convergence of Eigenvalues of Laplacian, FPS '15) For all k = 0, 1, ..., we have

$$\lim_{\epsilon\to 0}\lambda_k(M,g_\epsilon)=\lambda_k(M_1,g_1).$$

For each k, this is uniformly convergent with respect to j = 0, 1, ..., k.

From the proof, we also find the convergence of the associated eigenfunctions.

< 回 ト < 三 ト < 三 ト

Local Spectral Analysis: Connected Sums

Local Analysis and Connected Sums-The Results

Theorem

(Convergence of Eigenvalues of Laplacian, FPS '15) For all k = 0, 1, ..., we have

$$\lim_{\epsilon\to 0}\lambda_k(M,g_\epsilon)=\lambda_k(M_1,g_1).$$

For each k, this is uniformly convergent with respect to j = 0, 1, ..., k.

From the proof, we also find the convergence of the associated eigenfunctions.

・ 同 ト ・ ヨ ト ・ ヨ ト

23 / 24

Orbifold versus Manifold Spectral Theory

Local Spectral Analysis: Connected Sums

Work in Progress

 Generalize the above convergence results to the orbifold spectrum on *p*-forms, ∀*p*.

Special Session on The Analysis, Geometry, Orbifold versus Manifold Spectral Theory

3

(日) (周) (三) (三)