Riemannian submersions between Riemannian Lie groupoids

Matias del Hoyo & Rui L Fernandes

IMPA, Brazil & University of Illinois at Urbana-Champaign, USA

AMS Sectional Meeting - Groupoid Fest 2015 - Memphis

Overview

Technical results:

- Riemannian groupoids ⇒ linearization of groupoids (GroupoidFest 2013)
- Riemannian submersions between Riemannian groupoids linearization of submersions

Aplications:

- invariance under Morita equivalence of metrics (⇒ metrics on stacks)
- Rigidity of proper groupoids
- Ehresmann Theorem for groupoids/stacks

References:

- M. del Hoyo & RLF, Riemannian metrics on Lie groupoids, *Journal für die reine und angewandte Mathematik (Crelle)*, 2015.
- M. del Hoyo & RLF, Fibrations and metrics on Lie groupoids, to be posted soon on the arXive.

Riemannian *n*-metrics on Lie groupoids

Nerve of a Lie groupoid:

$$\dots = G^{n} = G^{n} = G^{2} = G^{1} = G^{0} [\longrightarrow G^{0}/G^{1}]$$

Definition

A **n-metric** on *G* is a metric $\eta^{(n)}$ on the manifold G^n which is invariant under S_{n+1} and that is transverse to one (and hence all) face-map $\varepsilon_i : G^n \to G^{n-1}$. When n = 2, the pair $(G, \eta^{(2)})$ is called a **Riemannian groupoid**.

- *n*-metric \implies *k*-metric for all $n > k \ge 0$;
- 1-metric ⇒ orbit foliation is a (singular) Riemannian foliation;
- 3-metric \implies (unique) *k*-metric for all *k*.
- In general, the metric $\eta^{(1)}$ does not determine the metric $\eta^{(2)}$.

Examples of Riemannian groupoids

Many classes of groupoids are Riemannian:

- **(1)** Unit groupoid: $M \Rightarrow M$ for any Riemannian manifold (M, η) ;
- 2 Pair groupoid: $M \times M \Rightarrow M$ for any Riemannian manifold (M, η) ;
- **§** Fibration groupoid: $E \times_B E \Rightarrow E$ for any Riemannian submersion $p: (E, \eta_E) \rightarrow (B, \eta_B);$
- **4 Holonomy groupoid:** $Hol(\mathcal{F}) \rightrightarrows M$ for any Riemannian foliation (\mathcal{F}, η_M) ;
- **Sometric group actions** $G \ltimes M \Rightarrow M$ (complicated metrics constructed out of left-invariant metric η_G and η_M .
- **b** Lie groups (special case of isometric actions).

Theorem (del Hoyo & RLF (2015))

Proper groupoids $G \Rightarrow M$ are Riemannian.

Proof: Multiple averaging arguments using Haar systems and quasi-actions.

Linear model of a groupoid

 $G \Rightarrow M$ – Lie groupoid $S \subset M$ – saturated neighborhood (=union of orbits of *G*)

$$\nu(G_S) \xrightarrow{\longrightarrow} \nu(S)$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_S \xrightarrow{\longrightarrow} S$$

Definition

The groupoid $\nu(G_S) \rightrightarrows \nu(S)$ is called the **linear model** around S

2 A groupoid neighborhood of $G_S \Rightarrow S$ is a pair of opens $S \subset U$, $G_S \subset \tilde{U}$ such that $\tilde{U} \Rightarrow U$ is a subgroupoid of $G \Rightarrow M$,

Linearization Theorem

Theorem (del Hoyo, RLF (2015))

Let $G \Rightarrow M$ be a Lie groupoid with a multiplicative metric $\eta^{(2)}$. Then G is weakly linearizable around any saturated $S \subset M$: there are groupoid neighborhoods of $G_S \Rightarrow S$ in $G \Rightarrow M$ and in $\nu^*(G_S) \Rightarrow \nu^*(S)$ which are isomorphic.

Corollary

All known linearization theorems for Lie groupoids.

Proof of the Linearization Theorem:

$$\nu(G_S)^2 \Longrightarrow \nu(G_S) \Longrightarrow \nu(S)$$

$$\exp_{\eta^{(2)}} \bigvee \exp_{\eta^{(1)}} \bigvee \exp_{\eta^{(0)}} \bigvee$$

$$G^2 \Longrightarrow G \Longrightarrow M$$

- Linearization of proper Lie groupoids was conjectured by Weinstein (2002) and proved by Zung (2005), using Banach space techniques. A more geometric proof, using groupoid cohomology, was given by Crainic & Struchiner (2011). Our result is more general and has an easier proof!
- Linearization Theorem \implies classical results:
 - Ehresmann theorem: every proper submersions is locally trivial;
 - Bochner Linearization Theorem/Slice Theorem: local model for a proper action around an orbit.
 - Local Reeb Stability: local model for a foliation around compact leaf with finite holonomy.
- Linearization Theorem \implies new results:
 - Local normal forms for Poisson manifolds around symplectic leaves (Marcut (2012), Crainic, RLF & Martinez-Torres (unpublished));

Riemannian submersions of Lie groupoids

Definition

A Lie groupoid map $\phi: \tilde{G} \to G$ is a called a **Riemannian submersion** if both \tilde{G} and G are endowed with 2-metrics, for which $\phi^{(2)}: \tilde{G}^{(2)} \to G^{(2)}$ becomes a Riemannian submersion.

- $\phi^{(2)}$ Riemannian submersion $\Longrightarrow \phi^{(1)}$ and $\phi^{(0)}$ Riemannian submersions;
- *φ* : *G̃* → *G* is a *Riemannian k-submersion* if there exist *k*-metrics and *φ*^(k) is a Riemannian submersion;
- Riemannian k-submersion \implies Riemannian (k 1)-submersion.

Fibrations and cleavages

Are there many examples of Riemannian submersions?

Definition

A fibration is a map $\phi: \tilde{G} \to G$ such that $\phi^{(0)}: \tilde{M} \to M$ and

$$\phi': \tilde{G} \to G \times_M \tilde{M}, \quad g \mapsto (\phi^{(1)}(g), s(g))$$

are surjective submersions. G is called the **base** and \tilde{G} the **total groupoid**.

Definition

A **cleavage** for a fibration $\phi : \tilde{G} \rightarrow G$ is a smooth section:

$$\tilde{G} \xrightarrow{\phi'} G \times_M \tilde{M}$$

A cleavage is call **unital** if it preserves identities and **flat** if it is closed under multiplication. A **split fibration** is a fibration with a unital, flat, cleavage.

del Hoyo & RLF

Riemannian Submersions and Groupoids

Examples of fibrations and cleavages

- a fibration between unit groupoids φ : M̃ → M is the same as a surjective submersion and it is always split: it has a unique cleavage which is flat and unital;
- A fibration between Lie groups φ : G̃ → G is the same as a surjective Lie group homomorphism; a cleavage σ : G → G̃ is simply a smooth section and it may be split or not.
- A fibration φ : (G̃ ⇒ M̃) → (M ⇒ M) is called a **family of Lie groupoids** parametrized M ⇔ surjective submersion M̃ → M constant along the G̃-orbits. It has an obvious flat unital cleavage, so it is always split.
- For a Lie groupoid action G ∼ M̃ along a submersion μ : M̃ → M the projection (G κ M̃ ⇒ M̃) → (G ⇒ M) is a fibration. Every fibration for which φ' is bijective arises in this way and φ is then called an **action fibration**. It has a unique flat unital cleavage, so it is always split.
- If $\phi : \tilde{G} \to G$ is a Morita map and $\phi^{(0)}$ is a surjective submersion, then ϕ is a fibration, called a **Morita fibration**. It may admit a cleavage or not (e.g., the usual covering $\mathbb{S}^1 \to \mathbb{R}$ gives a Morita fibration between the pair groupoids which has no cleavage).

Split Fibrations

There is a 1:1 correspondence:

 $\{ ext{split fibrations}\} \quad \longleftrightarrow \quad \begin{array}{c} ext{semi-direct products} \ (G imes_M \, K \rightrightarrows \, ilde{M}) o (G \rightrightarrows \, M) \end{array}$

where $G \rightrightarrows M$ acts on a family of Lie groupoids $q : (K \rightrightarrows \tilde{M}) \rightarrow M$.

Theorem

Every split fibration $\phi : \tilde{G} \to G$ between proper groupoids can be made Riemannian, i.e., there exist 2-metrics $\tilde{\eta}$ on \tilde{G} and η on G for which ϕ is a Riemannian submersion.

Proof: Averaging adapted to the fibration.

Linear model of a submersion

For a submersion $\phi : \tilde{G} \to G$ and a saturated submanifold $S \subset M$:

•
$$\tilde{S} = \phi^{-1}(S) \subset \tilde{M}$$
 is a saturated submanifold

induced map between the linear local models:

$$\overline{\mathrm{d}\phi}:(
u(ilde{G}_{ ilde{\mathcal{S}}})
ightarrow
u(ilde{\mathcal{S}}))
ightarrow (
u(G_{\mathcal{S}})
ightarrow
u(\mathcal{S})).$$

Definition

We say that ϕ is **linearizable around** *S* if there is a linearization $\tilde{\alpha}$ of \tilde{G} around $\tilde{S} = \phi^{-1}(S)$ and a linearization α of *G* around *S* inducing a commutative square:

Linearization of Riemannian submersions

Theorem (del Hoyo & RLF (2015))

Let $\phi : (\tilde{G}, \tilde{\eta}) \to (G, \eta)$ a Riemannian submersion between Lie groupoids, let $S \subset M$ embedded saturated, and let $\tilde{S} = \phi^{-1}(S)$. Then the exponential maps of $\tilde{\eta}$ and η define a linearization of ϕ around S.

Corollary

A split fibration between proper Lie groupoids is linearizable.

Ehresman Theorem for groupoid fibrations

Theorem

Let $\phi : \tilde{G} \to G$ be a proper split fibration between proper Lie groupoids, and let $S \subset M$ be a saturated submanifold. Then there exist open subgroupoids $G_S \subset U \subset \nu(G_S)$ and $G_S \subset V \subset G$, and linearization maps:

Deformations of Lie groupoids

Definition

A **deformation** of $G \Rightarrow M$ parametrized by *I* with base point $0 \in I$ consists of a fibration $\phi : \tilde{G} \rightarrow I$ such that $\phi^{(1)}, \phi^{(0)}$ are locally trivial and the central fiber \tilde{G}_0 is isomorphic to *G*. The deformation is called:

- *k*-parameter deformation if $I \subset \mathbb{R}^k$ open subset;
- **proper** if \(\phi\) is a proper map;
- trivial if it is isomorphic to the product family $G \times I \rightarrow I$;

- A groupoid admits proper deformations only when it is compact;
- ² For proper deformation, the conditions that $\phi^{(1)}$ and $\phi^{(0)}$ be locally trivial are automatic;
- Solution In a deformation, one can think that the manifolds *G* and *M* remain fixed while, when the parameter $\varepsilon \in I$ varies, one deforms the structure maps $s_{\varepsilon}, t_{\varepsilon}, m_{\varepsilon}, u_{\varepsilon}, i_{\varepsilon}$ of the groupoid *G*.

Examples of deformations

(deformation of a Lie group) Let $G =]0, +\infty[\times\mathbb{R}$ and consider a family of groups $\phi : G \times \mathbb{R} \to \mathbb{R}$, $(x, y, \varepsilon) \mapsto \varepsilon$, with multiplication:

$$(x_1, y_1) \star_{\varepsilon} (x_2, y_2) := (x_1 + x_2, y_1 + (x_1)^{\varepsilon} y_2).$$

(deformation of a group action) Consider the family of group actions of \mathbb{R} on $\mathbf{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ given by:

$$\mathbf{X} \star_{\varepsilon} (\theta_1, \theta_2) = (\theta_1 + \varepsilon \mathbf{X}, \theta_2 + \varepsilon \mathbf{X}).$$

with associated fibration $\phi : G \times \mathbb{R} \to \mathbb{R}$ where $G = \mathbb{R} \times T^2 \rightrightarrows T^2$.

(deformation of a foliation) Consider the family of foliations $\mathcal{F}_{\varepsilon}$ of $\mathbf{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ defined by the distributions:

$$T\mathcal{F}_{\varepsilon} = \left(\frac{\partial}{\partial\theta_1} + \varepsilon \frac{\partial}{\partial\theta_2}\right).$$

The corresponding monodromy groupoids $Mon(\mathcal{F}_{\varepsilon}) = \mathbf{T}^2 \times \mathbb{R} \rightrightarrows \mathbf{T}^2$ give a 1-parameter deformation $\phi : G_0 \times \mathbb{R} \to \mathbb{R}$, $(\theta_1, \theta_2, x, \varepsilon) \to \varepsilon$, of $G_0 = Mon(\mathcal{F}_0)$.

Compact Lie groupoids are rigid

Theorem

Compact Lie groupoids are rigid: a proper deformation $\tilde{G} \to I$ of a compact Lie groupoid $G \rightrightarrows M$ is locally trivial.

Proof. For G be a compact Lie groupoid the family

$$\phi: (\tilde{\boldsymbol{G}} \rightrightarrows \tilde{\boldsymbol{M}}) \to (\mathbb{R}^k \rightrightarrows \mathbb{R}^k)$$

is linearizable. The local linear model around the central fiber is just the trivial family $G \times \mathbb{R}^k \times \mathbb{R}^k$.

Compact Lie groupoids are rigid

Some consequences of the rigidity theorem:

- the rigidity of Lie group structures on a compact manifold;
- the rigidity of smooth actions K ∩ M of a fixed compact group on a fixed compact manifold (Palais).
- the rigidity of compact Hausdorff foliations of *M* whose leaves have finite fundamental group (Rosenberg *et al.*)

Remark: Similar results were obtained recently by Crainic, Mestre and Struchiner, using completely different techniques (deformation cohomology). Preprint arXiv:1510.02530.

Rigidity of proper Lie groupoids

Proper Lie groupoids fail to be rigid:

Example

Let \mathbb{Z}_2 act on \mathbb{R} by reflection in the origin and trivially on an exotic \mathbb{R}_e^4 . The induced diagonal action $\rho : \mathbb{Z}_2 \curvearrowright \mathbb{R} \times \mathbb{R}_e^4 \simeq \mathbb{R}^5$ is a non-linear action that is not isomorphic to the linearized action at the origin: the fixed point sets of the linear action (i.e., \mathbb{R}^4) and of the non-linear action (i.e., \mathbb{R}_e^4) are not diffeomorphic. Hence, the family of \mathbb{Z}_2 -actions $\rho_{\varepsilon}(x) := 1/\varepsilon \rho(\varepsilon x)$ yields a non-trivial 1-parameter deformation $\phi : G \times \mathbb{R} \to \mathbb{R}$ of the proper groupoid $G = \mathbb{Z}_2 \ltimes \mathbb{R}^5 \rightrightarrows \mathbb{R}^5$.

Theorem

A k-parameter deformation $G \times \mathbb{R}^k \to \mathbb{R}^k$ of a proper groupoid G that fixes the source and target is trivial.

Other applications and on-going work:

Other applications:

- Invariance under Morita equivalence of groupoid metrics;
- Ehresman Theorem for stacks.

On-going work and future directions:

- Harmonic representatives for equivariant cohomology;
- Hodge Theory for geometric stacks;
- Singularities of geometric flows.