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Fell bundles

De�nition

A Fell bundle p : B → G over a locally compact Hausdor� groupoid G is an

upper semicontinuous Banach bundle equipped with a multiplication map

(a, b)→ ab and an involution b → b∗ such that

1 p(ab) = p(a)p(b),

2 p(b∗) = p(b)−1,

3 (ab)∗ = b∗a∗,

4 for each u ∈ G (0), B(u) is a C ∗-algebra,

5 for each x ∈ G , B(x) is a B(r(x))− B(s(x))-imprimitivity bimodule

with the inner products

B(r(x))〈a, b〉 = ab∗ and 〈a, b〉B(s(x)) = a∗b.
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Example: dynamical systems

Example

Assume that (A,G , α) is a dynamical system with G a group.

B is the trivial bundle A× G

The multiplication in B is given by

(a, s)(b, t) = (aαs(b), st)

and

(a, s)∗ = (α−1s (a∗), s−1).
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Example: groupoid dynamical systems

Example

Let (A,G , α) be a groupoid dynamical system. Then

B := Aoα G := r∗A = {(a, x) : π(a) = r(x)}

with the operations

(a, x)(b, y) := (aαx(b), xy)

and

(a, x)∗ := (α−1x (a∗), x−1)

is a Fell bundle over G .
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C
∗-algebra of a Fell bundle

De�nition

Assume that G has a Haar system {λu}u∈G (0) . For f , g ∈ Γc(G ;B) one

de�nes

f ∗ g(x) =

ˆ
G

f (y)g(y−1x)dλr(x)(y)

and

f ∗(x) = f (x−1)∗.

C ∗(G ;B) is the completion of Γc(G ;B) with respect to the universal norm.
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Main Result

Theorem (Kumjian '98; Muhly '00; Kumjian, Sims, Williams and M.I.,
15)

Let p : B → G be a second countable, saturated Fell bundle over a locally

compact Hausdor� groupoid G endowed with a Haar system {λx}x∈G (0) .

Then there is a groupoid dynamical system (K,G , α) such that C ∗(G ;B)
and C ∗(K oα G ) are Morita equivalent and so are C ∗red(G ;B) and

C ∗red(K oα G ).
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Construction of the groupoid dynamical system

Theorem

Let p : B → G be a Fell bundle over G. For x ∈ G (0) let

V (x) = L2(Gx ;B, λx). Then V (x) is a full right A(x)-Hilbert module.

Moreover, if V :=
⊔

x∈G (0) V (x) and ν : V → G (0) is the projection map,

then ν : V → G (0) is an upper semicontinuous Banach bundle over G (0)

and V := Γ0(G (0),V ) is a full Hilbert A-module.
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Construction of the C ∗-bundle

Theorem

Let p : B → G be a Fell bundle over G and let V be bundle over G (0) from

the previous slide. Then there is an upper semicontinuous C ∗-bundle
k : K(V )→ G (0) such that there is a C0(G (0)) linear isomorphism of K(V)
onto Γ0(G (0),K(V )) and such that K(V )(x) is isomorphic to K(V (x)).
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The action

Theorem

For g ∈ G, the map βg : V (r(g))⊗A(r(g)) B(g)→ V (s(g)) de�ned on

elementary tensors by

βg (ξ ⊗ b)(γ) = ξ(γg−1)b

extends to an isometric isomorphism of Hilbert A(s(g))-modules. Then the

map αg de�ned by

αg (βg (ξ ⊗ b)⊗ η∗) = ξ ⊗ βg−1(η ⊗ b∗)∗

extends to a ∗-isomorphism between K(V (s(g))) and K(V (r(g))).
Moreover, (K(V ),G , α) is a groupoid dynamical system.
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The equivalence

Theorem

For g ∈ G let E (g) = V (r(g))⊗A(r(g)) B(g), let E =
⊔

g∈G E (g), and let

q : E → G be the projection map. Then q : E → G is an upper

semicontinuous Banach bundle over G and a K(V ) oα G − B equivalence.

Hence C ∗(G ;B) and C ∗(G ;K(V ) oα G ) are Morita equivalent and so are

C ∗red(G ;B) and C ∗red(G ;K(V ) oα G ).
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Applications

Theorem

Let G be a Hausdor� locally compact groupoid and let p : B → G be a

continuous Fell bundle. Let A be the C ∗-algebra over G (0). Assume that

the action of G on PrimA is amenable and essentially free. Then the

lattice of ideals of C ∗(G ;B) is isomorphic to the lattice of invariant open

sets of PrimA.

Theorem (Kumjian, Pask, Sims, 2014; Kumjian, Sims, Williams, and
M.I., 2015)

Under the same hypothesis, C ∗(G ;B) is simple if and only if the action of

G on PrimA is minimal.
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