A Stabilization Theorem for Fell Bundles over Groupoids (part 1)

Marius Ionescu Joint with Alex Kumjian, Aidan Sims, and Dana P. Williams

Groupoid Fest 2015, University of Memphis

United States Naval Academy

Fell bundles

Definition

A Fell bundle $p : \mathcal{B} \to G$ over a locally compact Hausdorff groupoid G is an upper semicontinuous Banach bundle equipped with a multiplication map $(a, b) \to ab$ and an involution $b \to b^*$ such that • p(ab) = p(a)p(b), • $p(b^*) = p(b)^{-1}$, • $(ab)^* = b^*a^*$, • for each $u \in G^{(0)}$, B(u) is a C*-algebra,

• for each $x \in G$, B(x) is a B(r(x)) - B(s(x))-imprimitivity bimodule with the inner products

$$_{B(r(x))}\langle a,b
angle=ab^{*}$$
 and $\langle a,b
angle_{B(s(x))}=a^{*}b.$

Example: dynamical systems

Example

- Assume that (A, G, α) is a dynamical system with G a group.
- ${\cal B}$ is the trivial bundle A imes G
- The multiplication in \mathcal{B} is given by

$$(a,s)(b,t) = (a\alpha_s(b),st)$$

and

$$(a,s)^* = (\alpha_s^{-1}(a^*), s^{-1}).$$

Example: groupoid dynamical systems

Example

Let $(\mathcal{A}, \mathcal{G}, \alpha)$ be a groupoid dynamical system. Then

$$\mathcal{B} := \mathcal{A} \rtimes_{\alpha} \mathcal{G} := r^* \mathcal{A} = \{(a, x) : \pi(a) = r(x)\}$$

with the operations

$$(a,x)(b,y) := (a\alpha_x(b),xy)$$

and

$$(a, x)^* := (\alpha_x^{-1}(a^*), x^{-1})$$

is a Fell bundle over G.

C^* -algebra of a Fell bundle

Definition

Assume that G has a Haar system $\{\lambda^u\}_{u\in G^{(0)}}$. For $f,g\in \Gamma_c(G;\mathcal{B})$ one defines

$$f * g(x) = \int_G f(y)g(y^{-1}x)d\lambda^{r(x)}(y)$$

and

$$f^*(x) = f(x^{-1})^*.$$

 $C^*(G; \mathcal{B})$ is the completion of $\Gamma_c(G; \mathcal{B})$ with respect to the *universal* norm.

Main Result

Theorem (Kumjian '98; Muhly '00; Kumjian, Sims, Williams and M.I., 15)

Let $p: \mathcal{B} \to G$ be a second countable, saturated Fell bundle over a locally compact Hausdorff groupoid G endowed with a Haar system $\{\lambda_x\}_{x\in G^{(0)}}$. Then there is a groupoid dynamical system (\mathcal{K}, G, α) such that $C^*(G; \mathcal{B})$ and $C^*(\mathcal{K} \rtimes_{\alpha} G)$ are Morita equivalent and so are $C^*_{red}(G; \mathcal{B})$ and $C^*_{red}(\mathcal{K} \rtimes_{\alpha} G)$.

Construction of the groupoid dynamical system

Theorem

Let $p: \mathcal{B} \to G$ be a Fell bundle over G. For $x \in G^{(0)}$ let $V(x) = L^2(G_x; \mathcal{B}, \lambda_x)$. Then V(x) is a full right A(x)-Hilbert module. Moreover, if $V := \bigsqcup_{x \in G^{(0)}} V(x)$ and $\nu : V \to G^{(0)}$ is the projection map, then $\nu : V \to G^{(0)}$ is an upper semicontinuous Banach bundle over $G^{(0)}$ and $\mathcal{V} := \Gamma_0(G^{(0)}, V)$ is a full Hilbert A-module.

Construction of the C^* -bundle

Theorem

Let $p : \mathcal{B} \to G$ be a Fell bundle over G and let V be bundle over $G^{(0)}$ from the previous slide. Then there is an upper semicontinuous C^* -bundle $k : \mathcal{K}(V) \to G^{(0)}$ such that there is a $C_0(G^{(0)})$ linear isomorphism of $\mathcal{K}(\mathcal{V})$ onto $\Gamma_0(G^{(0)}, \mathcal{K}(V))$ and such that $\mathcal{K}(V)(x)$ is isomorphic to $\mathcal{K}(V(x))$.

The action

Theorem

For $g \in G$, the map $\beta_g : V(r(g)) \otimes_{A(r(g))} B(g) \to V(s(g))$ defined on elementary tensors by

$$\beta_{g}(\xi \otimes b)(\gamma) = \xi(\gamma g^{-1})b$$

extends to an isometric isomorphism of Hilbert A(s(g))-modules. Then the map α_g defined by

$$\alpha_{g}(\beta_{g}(\xi \otimes b) \otimes \eta^{*}) = \xi \otimes \beta_{g^{-1}}(\eta \otimes b^{*})^{*}$$

extends to a *-isomorphism between $\mathcal{K}(V(s(g)))$ and $\mathcal{K}(V(r(g)))$. Moreover, $(\mathcal{K}(V), G, \alpha)$ is a groupoid dynamical system.

The equivalence

Theorem

For $g \in G$ let $E(g) = V(r(g)) \otimes_{A(r(g))} B(g)$, let $\mathcal{E} = \bigsqcup_{g \in G} E(g)$, and let $q : \mathcal{E} \to G$ be the projection map. Then $q : \mathcal{E} \to G$ is an upper semicontinuous Banach bundle over G and a $\mathcal{K}(V) \rtimes_{\alpha} G - \mathcal{B}$ equivalence. Hence $C^*(G; \mathcal{B})$ and $C^*(G; \mathcal{K}(V) \rtimes_{\alpha} G)$ are Morita equivalent and so are $C^*_{red}(G; \mathcal{B})$ and $C^*_{red}(G; \mathcal{K}(V) \rtimes_{\alpha} G)$.

Applications

Theorem

Let G be a Hausdorff locally compact groupoid and let $p: \mathcal{B} \to G$ be a continuous Fell bundle. Let A be the C^{*}-algebra over $G^{(0)}$. Assume that the action of G on Prim A is amenable and essentially free. Then the lattice of ideals of C^{*}(G; \mathcal{B}) is isomorphic to the lattice of invariant open sets of Prim A.

Theorem (Kumjian, Pask, Sims, 2014; Kumjian, Sims, Williams, and M.I., 2015)

Under the same hypothesis, $C^*(G; B)$ is simple if and only if the action of G on Prim A is minimal.