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Cohomology for groupoids and k-graphs

Many flavors of groupoid cohomology:

Borel cocycle cohomology [Moo64]

Continuous cocycle cohomology [Ren80]

Sheaf cohomology [Kum88]

Brauer group [KWMR98]

Cohomology from simplicial spaces [Hae79, Moe98, Tu06]

For a higher-rank graph Λ, we have

Cubical cohomology of Λ [KPS12]

Categorical cohomology of Λ [KPS15]

Cohomology for small categories [Xu08, BW, Wat66]
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Why another one?

To a k-graph Λ, associate (functorially) a groupoid GΛ

Do we get maps from k-graph cohomology to groupoid
cohomology?

[KPS15] construct maps H i (Λ,A)→ H i
c(GΛ,A) for i ≤ 2

Very different constructions for i = 0, 1, 2!
Don’t generalize readily to i > 2

Cohomology for small categories fixes this
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Outline

Interpret cohomology for small categories in terms of
higher-rank graphs Λ

Λ-modules A
Define a functor A 7→ A from Λ-modules to GΛ-sheaves

Obtain a map ψn : Hn(Λ,A)→ Hn
c (GΛ,A) for all n

Future work: Connect ψ2 with σ : H2(Λ,A)→ H2
c (GΛ,A) of

[KPS15]
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Higher-rank graphs

What are k-graphs?

Directed graph  k-graph Λ

Paths  k-dimensional rectangles

Degree functor d : Λ→ Nk tells us the size of the “path”
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Higher-rank graphs

Definition

A k-graph is a countable category Λ with a degree map
d : Λ→ Nk satisfying the following factorization property:
Whenever λ ∈ Λ has d(λ) = m + n, ∃! µ, ν ∈ Λ such that λ = µν
and d(µ) = m, d(ν) = n.
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Higher-rank graphs
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In our example,

d(λ) = (3, 2) = (0, 2) + (3, 0) = (2, 0) + (0, 1) + (1, 0) + (0, 1),

so each of these possible factorizations must give us the same
element λ.
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Infinite paths in k-graphs

Write Λ∞ for the space of infinite paths in Λ.

For each p ∈ Nk , set σp : Λ∞ → Λ∞ by “chopping off” the initial
segment of shape p.

More formally: Let

Ωk = {(m, n) ∈ Nk × Nk : m ≤ n}.

This is a k-graph with d(m, n) = n −m.

An infinite path x ∈ Λ∞ is a degree-preserving functor x : Ωk → Λ.

σp(x)(m, n) = x(m + p, n + p)

Think of x as a way to map Nk into Λ; σp(x) corresponds to the
isomorphism Nk ←→ Nk + p.
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k-graph groupoids

GΛ := {(x , p − q, y) : x , y ∈ Λ∞, σp(x) = σq(y)}

G(0)
Λ
∼= Λ∞ = {(x , 0, x) : x ∈ Λ∞}

(x , n, y)(y , `, z) = (x , n + `, z)
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Sheaves and Λ-modules

Definition

A Λ-module is a contravariant functor A : Λ→ Ab.

To each vertex (object) v ∈ Λ0, associate Av ∈ Ab. To an element
(morphism) λ : v → w of Λ, associate A(λ) : Aw → Av (group
homomorphism).

A G-sheaf A consists of:

An abelian group A (x) at each x ∈ G(0)

An isomorphism αγ : A (s(γ))→ A (r(γ)) for each γ ∈ G
A topology on A =

⊔
x∈G(0) A (x) making everything

continuous and consistent.
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From Λ-modules to GΛ-sheaves

Let A be a Λ-module. For x ∈ Λ∞, define

A(x) = lim−→
Ωk

(Ax(p),A(x(p, q)))

Ωk is a directed system: Given any two rectangles
(m, n), (p, q) ∈ Ωk , there is a rectangle (M,N) ∈ Ωk containing
both. Mi = min{mi , pi}; Ni = max{ni , qi}.
Recall that x(p, q) ∈ Λ is a morphism with range x(p), source
x(q); A is a contravariant functor.
GΛ-action?
Let ϕx

p : Ax(p) → A(x). Then

(x , p − q, y) · (ϕy
q(a)) = ϕx

p(a).

Theorem (G-Kumjian)

The map A 7→ A is a functor from Λ-mod to GΛ-shf.
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Continuous cohomology from sheaves

Usually, one defines an A-valued n-cochain on G as a function
f : G(n) → A. We have a coboundary δn taking n-cochains to
(n − 1)-cochains.

Hn
c (G,A) =

ker δn

Im δn+1

Alternatively:
From G(n), construct a relative projective resolution P∗ of the
trivial G-sheaf Z.

Proposition (G-Kumjian)

Hn
c (G,A ) = Hn(Hom(P∗,A )).
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From k-graph cohomology to groupoid cohomology

F n
v = Z{(λ1, . . . , λn) ∈ vΛ∗n : s(λn) = v}

F n(λ)[λ1, . . . , λn] = [λ1, . . . , λnλ]

We define
Hn(Λ,A) = Hn(Hom(F ∗,A)).

Theorem (G-Kumjian)

F ∗ is a relative projective resolution of the trivial GΛ-sheaf Z.
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From k-graph cohomology to groupoid cohomology

Theorem (G-Kumjian)

Hn(Hom(P∗,A )) ∼= Hn(Hom(F ∗,A )).

Hn(Λ,A) −→ Hn(Hom(F ∗,A))
∼=←− Hn

c (GΛ,A).

To compare our map ψ2 : H2(Λ,A)→ H2(GΛ,A) with σ of
[KPS15], we’ll have to “flip arrows.”
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