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Counter-example to the Seifert Conjecture:

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable
3-manifold. Then M admits a C∞ non-vanishing vector field
whose flow φt has no periodic orbits.

• K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of
Math. (2), 140:723–732, 1994. (9 pages)

• É Ghys, Construction de champs de vecteurs sans orbite périodique (d’après
Krystyna Kuperberg), Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785,
Astérisque, 227: 283–307, 1995. (24 pages)

• S. Hurder & A. Rechtman, The dynamics of generic Kuperberg flows,
Astérisque, to appear, 170 pages in TeX.

Theorem (A. Katok, 1980) Let M be a closed, orientable
3-manifold. Then an aperiodic flow φt on M has entropy zero.
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Theorem (Hurder & Rechtman, 2015) Let M be a closed,
orientable 3-manifold. Then M admits a C∞-family of
non-vanishing vector fields ~Xt for −ε < t < ε whose flows:

• have entropy 0 for t < 0

• have no periodic orbits for t = 0

• have positive entropy for t > 0.

Solution of Palis Conjecture for surface diffeomorphisms:

• E. Pujals and M. Sambarino, On Homoclinic tangencies and hyperbolicity
for surface diffeomorphisms, Ann. of Math. (2),151:961–1023, 2000.

Explicit family of constructions:

• S. Hurder and A. Rechtman, Zippered laminations at the boundary of
hyperbolicity, preprint, 2015.
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φt : M → M a smooth flow. A complete section is a closed surface
T ⊂ M which is everywhere transverse to the flow.

Return map of flow induces diffeomorphism fφ : T → T

Dynamics of φt ↔ dynamics of fφ

φt : M → M a smooth flow. A section is a surface T ⊂ M which is
generically transverse to the flow.

Return map of flow induces a smooth pseudogroup Gφ on T

Dynamics of φt ↔ dynamics of Gφ ??
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Σ ⊂ M is minimal set for φt if:

• φt(Σ) = Σ for all t

• Σ is closed

• Σ is minimal with respect to these two properties.

Suppose that section T ∩ Σ is contained in the interior of Σ

=⇒ Dynamics of φt ↔ dynamics of Gφ
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Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a
unique minimal set Σ ⊂ M, with all other points wandering.

Theorem (Hurder & Rechtman, 2013) The unique minimal set
for a generic Kuperberg flow is a zippered lamination, a stratified
space with two strata:

• A 2-dimensional strata that has a laminated structure F ;

• A 1-dimensional strata that is transversally Cantor-like.

• Σ ∩ T defines a smooth pseudogroup GF

=⇒ Dynamics of φt ↔ dynamics of Gφ ↔ dynamics of GF ?

Theorem (Hurder & Rechtman, 2015) Entropy of Kuperberg
flow vanishes if and only if geometric entropy of GF vanishes.
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Strategy:

• Construct smooth variations of the Kuperberg flow

• Evaluate the entropy of these flows using pseudogroup entropy
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Definition: A plug is a 3-manifold with boundary of the form
P = D × [−1, 1] with D a compact surface with boundary. P is
endowed with a non-vanishing vector field ~X , such that:

• ~X is vertical in a neighborhood of ∂P, that is ~X = d
dz . Thus ~X

is inward transverse along D × {−1} and outward transverse along
D × {1}, and parallel to the rest of ∂P.

• There is at least one point p ∈ D × {−1} whose positive orbit is
trapped in P.

• If the orbit of q ∈ D × {−1} is not trapped then its orbit
intersects D × {1} in the facing point.

• There is an embedding of P into R3 preserving the vertical
direction.
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Construct a modified Wilson vector field ~W in a rectangle R
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Modified Wilson Plug W:

Consider the rectangle R × S1 with the vector field ~W = ~W1 + f f
dθ

The function f is asymmetric in z .
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Embed the Modified Wilson Plug in R3:
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Grow horns and embed them to obtain Kuperberg Plug K,
matching the flow lines on the boundaries.

The subtlety: embed so that the Reeb cylinder {r = 2} is tangent
to itself. Or, vary this parameter by −ε < t < ε to get ~Xt on K
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ε = 0: The insertion map as it appears in the face E1
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ε < 0: The insertion map as it appears in the face E1
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ε > 0: The insertion map as it appears in the face E1
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The section R0 ⊂ K used to define pseudogroups Gφ and GF .

The flow ~W is tangent to R0 along the center plane {z = 0}.
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The notched cylinder R′ embedded in W

K is obtained from W by a quotient map, τ : W→ K
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The flow of the cylinder R′ through one insertion is a simple
propeller:
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The flow of the cylinder R′ through infinite time is an infinite
branched tree M0 - a leaf of a lamination:
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The Kuperberg pseudogroup GF is generated by the holonomy of
the lamination M defined by the flow of the Reeb cylinder

M0 ≡ {φt(τ(R′)) | −∞ < t <∞}

M ≡ M0 ⊂ K

M is wildly wicked, though M0 admits a level filtration

M0
0 ⊂M1

0 ⊂M2
0 ⊂ · · ·

which matches the branching of the tree above.
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Generators {Id , φ+1 , φ
−
1 , φ

+
2 , φ

−
2 , ψ} of the pseudogroup GF



Introduction Entropy variation Sections Minimal sets Construction Pseudogroup Entropy

The word length ‖g‖ ≤ m if g ∈ GF can be expressed as the
composition of at most m generators.

Entropy for a C 1-pseudogroup action [Ghys, Langevin & Walczak,
1988] measures the “exponentiality” of the orbits.

Let ε > 0 and ` > 0, and d the metric on R0. A subset E ⊂ R0 is
said to be (d , ε, `)-separated if for all w ,w ′ ∈ E there exists g ∈ GF
with w ,w ′ ∈ Dom(g), and ‖g‖w ≤ ` so that d(g(w), g(w ′)) ≥ ε.
The “expansion growth function” is:

h(GF , d , ε, `) = max{#E | E ⊂ R0 is (d , ε, `)-separated}
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The entropy of GF is the asymptotic exponential growth type of
the expansion growth function:

h(GF ) = lim
ε→0

{
lim sup
`→∞

ln {h(GF , d , ε, `)} /`
}

Theorem (Hurder & Rechtman, 2015) Let ~Xt be the modified
Kuperberg flow on K. Then the “expansion growth function”:

• for −ε < t < 0 has polynomial growth, hence h(GF ) = 0

• for t = 0 has growth rate ∼ exp(
√
n), hence h(GF ) = 0

• for 0 < t < ε has exponential growth, hence h(GF ) > 0.
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Idea of proof:

• for −ε < t < 0, the surface M0 is finitely recursive

• for t = 0, the surface M0 is partially recursive

• for 0 < t < ε, the surface M0 is fully recursive.

Then use:

• Resulting growth estimates for number of words in GF ,

• estimate non-expansiveness of maps defined by the words in GF .
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É Ghys, Construction de champs de vecteurs sans orbite périodique (d’après
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