

Construction

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Entropy of the Kuperberg pseudogroup

Steve Hurder joint work with Ana Rechtman

University of Illinois at Chicago www.math.uic.edu/~hurder

Minimal sets

Construction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Entropy

Counter-example to the Seifert Conjecture:

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable 3-manifold. Then M admits a C^{∞} non-vanishing vector field whose flow ϕ_t has no periodic orbits.

Counter-example to the Seifert Conjecture:

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable 3-manifold. Then M admits a C^{∞} non-vanishing vector field whose flow ϕ_t has no periodic orbits.

• K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2), 140:723–732, 1994. (9 pages)

• É Ghys, Construction de champs de vecteurs sans orbite périodique (d'après Krystyna Kuperberg), Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, Astérisque, 227: 283–307, 1995. (24 pages)

• S. Hurder & A. Rechtman, *The dynamics of generic Kuperberg flows*, **Astérisque**, to appear, 170 pages in TeX.

Counter-example to the Seifert Conjecture:

Theorem (K. Kuperberg, 1994) Let M be a closed, orientable 3-manifold. Then M admits a C^{∞} non-vanishing vector field whose flow ϕ_t has no periodic orbits.

• K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2), 140:723–732, 1994. (9 pages)

• É Ghys, *Construction de champs de vecteurs sans orbite périodique (d'après Krystyna Kuperberg)*, Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, **Astérisque**, 227: 283–307, 1995. (24 pages)

• S. Hurder & A. Rechtman, *The dynamics of generic Kuperberg flows*, Astérisque, to appear, 170 pages in TeX.

Theorem (A. Katok, 1980) Let M be a closed, orientable 3-manifold. Then an aperiodic flow ϕ_t on M has entropy zero.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Entropy

Theorem (Hurder & Rechtman, 2015) Let M be a closed, orientable 3-manifold. Then M admits a C^{∞} -family of non-vanishing vector fields \vec{X}_t for $-\epsilon < t < \epsilon$ whose flows:

- have entropy 0 for t < 0
- have no periodic orbits for t = 0
- have positive entropy for t > 0.

Sections

/linimal sets

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Entropy

Theorem (Hurder & Rechtman, 2015) Let M be a closed, orientable 3-manifold. Then M admits a C^{∞} -family of non-vanishing vector fields \vec{X}_t for $-\epsilon < t < \epsilon$ whose flows:

- have entropy 0 for t < 0
- have no periodic orbits for t = 0
- have positive entropy for t > 0.

Solution of Palis Conjecture for surface diffeomorphisms:

• E. Pujals and M. Sambarino, *On Homoclinic tangencies and hyperbolicity for surface diffeomorphisms*, **Ann. of Math. (2)**,151:961–1023, 2000.

Entropy

Theorem (Hurder & Rechtman, 2015) Let M be a closed, orientable 3-manifold. Then M admits a C^{∞} -family of non-vanishing vector fields \vec{X}_t for $-\epsilon < t < \epsilon$ whose flows:

- have entropy 0 for t < 0
- have no periodic orbits for t = 0
- have positive entropy for t > 0.

Solution of Palis Conjecture for surface diffeomorphisms:

• E. Pujals and M. Sambarino, *On Homoclinic tangencies and hyperbolicity for surface diffeomorphisms*, **Ann. of Math. (2)**,151:961–1023, 2000.

Explicit family of constructions:

• S. Hurder and A. Rechtman, *Zippered laminations at the boundary of hyperbolicity*, preprint, 2015.

 $\phi_t \colon M \to M$ a smooth flow. A *complete section* is a closed surface $T \subset M$ which is everywhere transverse to the flow.

Return map of flow induces diffeomorphism $f_{\phi} \colon T \to T$ Dynamics of $\phi_t \leftrightarrow$ dynamics of f_{ϕ}

 $\phi_t \colon M \to M$ a smooth flow. A *complete section* is a closed surface $T \subset M$ which is everywhere transverse to the flow.

Return map of flow induces diffeomorphism $f_{\phi} \colon T \to T$ Dynamics of $\phi_t \leftrightarrow$ dynamics of f_{ϕ}

 $\phi_t \colon M \to M$ a smooth flow. A section is a surface $T \subset M$ which is generically transverse to the flow.

Return map of flow induces a smooth pseudogroup \mathcal{G}_{ϕ} on \mathcal{T} Dynamics of $\phi_t \leftrightarrow$ dynamics of \mathcal{G}_{ϕ} ??

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $\Sigma \subset M$ is minimal set for ϕ_t if:
- $\phi_t(\Sigma) = \Sigma$ for all t
- Σ is closed
- Σ is minimal with respect to these two properties.

- $\Sigma \subset M$ is minimal set for ϕ_t if:
- $\phi_t(\Sigma) = \Sigma$ for all t
- Σ is closed
- Σ is minimal with respect to these two properties.

Suppose that section $\,\mathcal{T}\cap\Sigma$ is contained in the interior of Σ

 \implies Dynamics of $\phi_t \leftrightarrow$ dynamics of \mathcal{G}_{ϕ}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Entropy

Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a unique minimal set $\Sigma \subset M$, with all other points wandering.

Entropy

Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a unique minimal set $\Sigma \subset M$, with all other points wandering.

Theorem (Hurder & Rechtman, 2013) The unique minimal set for a generic Kuperberg flow is a *zippered lamination*, a stratified space with two strata:

- A 2-dimensional strata that has a laminated structure \mathcal{F} ;
- A 1-dimensional strata that is transversally Cantor-like.
- + $\Sigma \cap \mathcal{T}$ defines a smooth pseudogroup $\mathcal{G}_\mathcal{F}$

Entropy

Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a unique minimal set $\Sigma \subset M$, with all other points wandering.

Theorem (Hurder & Rechtman, 2013) The unique minimal set for a generic Kuperberg flow is a *zippered lamination*, a stratified space with two strata:

- A 2-dimensional strata that has a laminated structure \mathcal{F} ;
- A 1-dimensional strata that is transversally Cantor-like.
- $\Sigma \cap \mathcal{T}$ defines a smooth pseudogroup $\mathcal{G}_\mathcal{F}$

 \implies Dynamics of $\phi_t \leftrightarrow$ dynamics of $\mathcal{G}_{\phi} \leftrightarrow$ dynamics of $\mathcal{G}_{\mathcal{F}}$?

Entropy

Theorem (Ghys, Matsumoto, 1995) The Kuperberg flow has a unique minimal set $\Sigma \subset M$, with all other points wandering.

Theorem (Hurder & Rechtman, 2013) The unique minimal set for a generic Kuperberg flow is a *zippered lamination*, a stratified space with two strata:

- A 2-dimensional strata that has a laminated structure \mathcal{F} ;
- A 1-dimensional strata that is transversally Cantor-like.
- $\Sigma \cap \mathcal{T}$ defines a smooth pseudogroup $\mathcal{G}_\mathcal{F}$

 \implies Dynamics of $\phi_t \leftrightarrow$ dynamics of $\mathcal{G}_{\phi} \leftrightarrow$ dynamics of $\mathcal{G}_{\mathcal{F}}$?

Theorem (Hurder & Rechtman, 2015) Entropy of Kuperberg flow vanishes if and only if geometric entropy of $\mathcal{G}_{\mathcal{F}}$ vanishes.

Strategy:

- Construct smooth variations of the Kuperberg flow
- Evaluate the entropy of these flows using pseudogroup entropy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Entropy

Definition: A plug is a 3-manifold with boundary of the form $P = D \times [-1, 1]$ with D a compact surface with boundary. P is endowed with a non-vanishing vector field \vec{X} , such that:

• \vec{X} is vertical in a neighborhood of ∂P , that is $\vec{X} = \frac{d}{dz}$. Thus \vec{X} is inward transverse along $D \times \{-1\}$ and outward transverse along $D \times \{1\}$, and parallel to the rest of ∂P .

• There is at least one point $p \in D \times \{-1\}$ whose positive orbit is trapped in P.

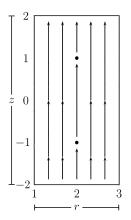
• If the orbit of $q \in D \times \{-1\}$ is not trapped then its orbit intersects $D \times \{1\}$ in the facing point.

• There is an embedding of P into \mathbb{R}^3 preserving the vertical direction.

ヘロト ヘ週ト ヘヨト ヘヨト

æ

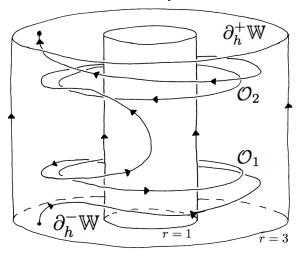
Construct a modified Wilson vector field \vec{W} in a rectangle R



Entropy

Modified Wilson Plug ₩:

Consider the rectangle $R \times \mathbb{S}^1$ with the vector field $\vec{W} = \vec{W}_1 + f \frac{f}{d\theta}$ The function f is asymmetric in z.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction

Entropy variation

Sections

linimal sets

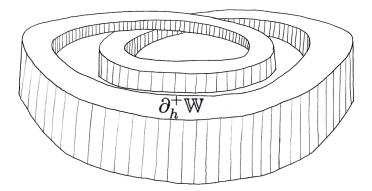
Construction

Pseudogroup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

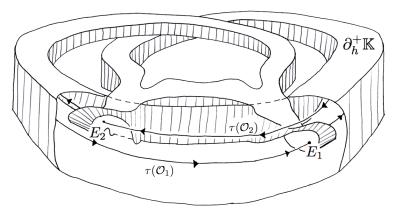
Entropy

Embed the Modified Wilson Plug in \mathbb{R}^3 :



Entropy

Grow horns and embed them to obtain Kuperberg Plug $\mathbb{K},$ matching the flow lines on the boundaries.



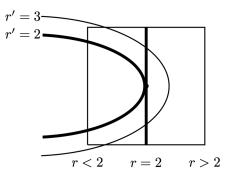
The subtlety: embed so that the Reeb cylinder $\{r = 2\}$ is tangent to itself. Or, vary this parameter by $-\epsilon < t < \epsilon$ to get \vec{X}_t on \mathbb{K}

				oduct							

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

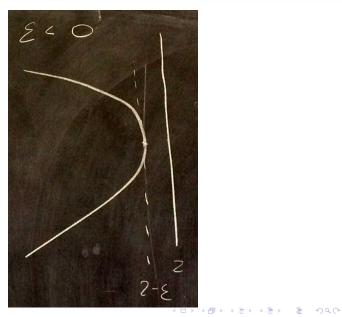
Entropy

 $\epsilon = 0$: The insertion map as it appears in the face E_1



Entropy

$\epsilon <$ 0: The insertion map as it appears in the face \textit{E}_{1}

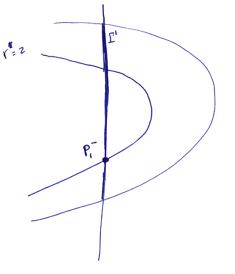


Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

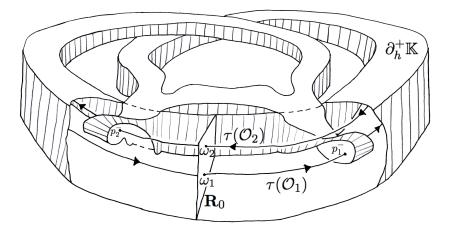
Entropy

$\epsilon >$ 0: The insertion map as it appears in the face \textit{E}_{1}



Entropy

The section $\mathbf{R}_0 \subset \mathbb{K}$ used to define pseudogroups \mathcal{G}_{ϕ} and $\mathcal{G}_{\mathcal{F}}$.

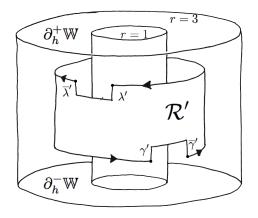


The flow \vec{W} is tangent to \mathbf{R}_0 along the center plane $\{z = 0\}$.

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

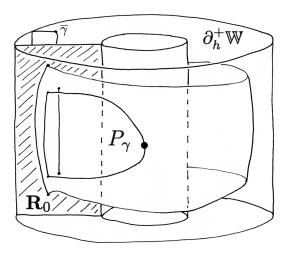
The notched cylinder \mathcal{R}' embedded in $\mathbb W$



 $\mathbb K$ is obtained from $\mathbb W$ by a quotient map, $\tau\colon\mathbb W\to\mathbb K$

Entropy

The flow of the cylinder \mathcal{R}' through one insertion is a simple propeller:



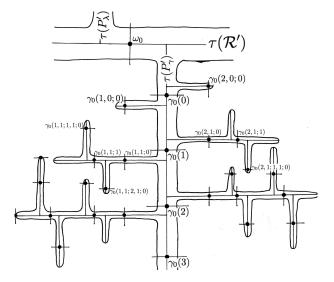
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Entropy

The flow of the cylinder \mathcal{R}' through infinite time is an infinite branched tree \mathfrak{M}_0 - a leaf of a lamination:



Entropy

The Kuperberg pseudogroup $\mathcal{G}_\mathcal{F}$ is generated by the holonomy of the lamination \mathfrak{M} defined by the flow of the Reeb cylinder

$$\mathfrak{M}_0 \; \equiv \; \{ \phi_t(au(\mathcal{R}')) \mid -\infty < t < \infty \}$$

$$\mathfrak{M} \equiv \overline{\mathfrak{M}_0} \subset \mathbb{K}$$

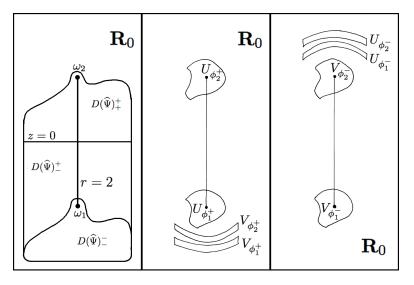
 ${\mathfrak M}$ is wildly wicked, though ${\mathfrak M}_0$ admits a level filtration

$$\mathfrak{M}^0_0\subset\mathfrak{M}^1_0\subset\mathfrak{M}^2_0\subset\cdots$$

which matches the branching of the tree above.

Entropy

Generators $\{\mathit{Id},\phi_1^+,\phi_1^-,\phi_2^+,\phi_2^-,\psi\}$ of the pseudogroup $\mathcal{G}_{\mathcal{F}}$



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

ctions

Entropy

The word length $||g|| \le m$ if $g \in \mathcal{G}_F$ can be expressed as the composition of at most *m* generators.

Entropy for a C¹-pseudogroup action [Ghys, Langevin & Walczak, 1988] measures the "exponentiality" of the orbits.

Let $\epsilon > 0$ and $\ell > 0$, and d the metric on \mathbf{R}_0 . A subset $\mathcal{E} \subset \mathbf{R}_0$ is said to be (d, ϵ, ℓ) -separated if for all $w, w' \in \mathcal{E}$ there exists $g \in \mathcal{G}_{\mathcal{F}}$ with $w, w' \in \text{Dom}(g)$, and $||g||_w \leq \ell$ so that $d(g(w), g(w')) \geq \epsilon$. The "expansion growth function" is:

 $h(\mathcal{G}_{\mathcal{F}}, d, \epsilon, \ell) = \max\{\#\mathcal{E} \mid \mathcal{E} \subset \mathbf{R}_0 \text{ is } (d, \epsilon, \ell) \text{-separated}\}$

Introduction

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Entropy

The entropy of $\mathcal{G}_{\mathcal{F}}$ is the *asymptotic exponential growth type* of the expansion growth function:

$$h(\mathcal{G}_{\mathcal{F}}) = \lim_{\epsilon \to 0} \left\{ \limsup_{\ell \to \infty} \ln \left\{ h(\mathcal{G}_{\mathcal{F}}, d, \epsilon, \ell) \right\} / \ell \right\}$$

Introduction

Entropy variation

Sections

The entropy of $\mathcal{G}_{\mathcal{F}}$ is the *asymptotic exponential growth type* of the expansion growth function:

$$h(\mathcal{G}_{\mathcal{F}}) = \lim_{\epsilon \to 0} \left\{ \limsup_{\ell \to \infty} \ln \left\{ h(\mathcal{G}_{\mathcal{F}}, d, \epsilon, \ell) \right\} / \ell \right\}$$

Theorem (Hurder & Rechtman, 2015) Let \vec{X}_t be the modified Kuperberg flow on \mathbb{K} . Then the "expansion growth function":

- for $-\epsilon < t < 0$ has polynomial growth, hence $h(\mathcal{G}_\mathcal{F}) = 0$
- for t = 0 has growth rate $\sim \exp(\sqrt{n})$, hence $h(\mathcal{G}_{\mathcal{F}}) = 0$
- for $0 < t < \epsilon$ has exponential growth, hence $h(\mathcal{G}_{\mathcal{F}}) > 0$.

Idea of proof:

- for $-\epsilon < t < 0$, the surface \mathfrak{M}_0 is finitely recursive
- for t = 0, the surface \mathfrak{M}_0 is partially recursive
- for $0 < t < \epsilon$, the surface \mathfrak{M}_0 is fully recursive.

Then use:

- Resulting growth estimates for number of words in $\mathcal{G}_{\mathcal{F}}$,
- estimate non-expansiveness of maps defined by the words in $\mathcal{G}_\mathcal{F}.$

É. Ghys, R. Langevin, and P. Walczak, *Entropie géométrique des feuilletages*, Acta Math., 160:105–142, 1988.

É Ghys, Construction de champs de vecteurs sans orbite périodique (d'après Krystyna Kuperberg), Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, Astérisque, 227: 283–307, 1995.

S. Hurder and A. Rechtman, *The dynamics of generic Kuperberg flows*, **Astérisque**, to appear, arXiv:1306.5025.

S. Hurder and A. Rechtman, *Zippered laminations at the boundary of hyperbolicity*, preprint, 2015.

K. Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2), 140:723–732, 1994.

G. Kuperberg and K. Kuperberg, *Generalized counterexamples to the Seifert conjecture*, Ann. of Math. (2), 144:239–268, 1996.