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Background on graph C ∗-algebras:

Higher rank graph C ∗-algebras were introduced by A. Kumjian and
D. Pask in 2000. These are generalizations of algebras associated
to directed graphs, which in turn generalized the Cuntz algebras On
generated by families of isometries first studied by J. Cuntz in 1977.

Definition: (Kumjian-Pask, 2000) Let k ≥ 1. A k-graph, or
higher-rank graph, is a countable small category Λ equipped with a
degree functor d : Λ → Nk satisfying the factorization property: if
d(λ) = m + n, then there exist unique µ and ν such that
d(µ) = m, d(ν) = n, and λ = µν.



Background on graph C ∗-algebras, continued:

Examples
1. For k = 1, Λ is the path category of a connected graph, and d

is the length function.
2. For k > 1, Λ is a collection of paths in a multi-colored graph;

here paths have a “degree" or “shape" rather than a length.
3. Two paths µ and ν can be concatenated if s(µ) = r(ν), and

then d(µν) = d(µ) + d(ν).

By the work of Kumjian and Pask [KP], C ∗-algebras can be
associated to higher-rank graphs and higher-rank graphs equipped
with a 2-cocycle. Also Kumjian and Pask showed that a k-graph Λ
has associated to it a path groupoid GΛ.



Fundamental example, k-graph
Let

Ωk = {(m, n) : m, n ∈ Nk : m ≤ n}.

The structure maps are given by r(m, n) = m, s(m, n) = n, so that
(`, n) = (`,m)(m, n) and then d(m, n) = n −m is a functor.

Ω2 can be represented by the following bi-colored graph with the
factorization rules.
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Another example

. g1f1 g2f2

We choose the following factorization rules:

f1g1 = g1f1 and f1g2 = g2f1
f2g1 = g1f2 and f2g2 = g2f2



Notation and terminology associated to k-graphs

I Λn := d−1(n) denotes the set of paths of degree n.

I The paths Λ0 of degree 0 are called vertices.

I For v ,w ∈ Λ0 and n ∈ Nk ,

vΛnw = {λ ∈ Λn : r(λ) = v , s(λ) = w}

I A k-graph is called finite if Λn is finite for all n ∈ Nk .

I We say that Λ has no sources if vΛei 6= ∅ for all v ∈ Λ0 and
i ∈ {1, . . . , k}..



Notation for k-graphs, continued:

I We say that a k-graph Λ is strongly connected if, for all
v ,w ∈ Λ0, vΛw 6= ∅.

I For 1 ≤ i ≤ k , let Ai be the matrix of MΛ0(N) with entries
Ai (v ,w) = |vΛeiw |, the number of paths from w to v with
degree ei ; we call the Ai the vertex adjacency matrices of Λ.



The higher-rank graph algebra C ∗(Λ)

Definition 1
Let Λ be a finite k-graph with no sources. A Cuntz-Krieger
Λ-family consists of partial isometries {tλ : λ ∈ Λ} such that

(CK1) {tv : v ∈ Λ0} are mutually orthogonal projections;
(CK2) tλtµ = tλµ whenever s(λ) = r(µ);
(CK3) t∗λtλ = ts(λ) for all λ ∈ Λ;

(CK4) for all v ∈ Λ0 and n ∈ Nk , we have tv =
∑

λ∈vΛn tλt∗λ.
The C ∗-algebra C ∗(Λ) of Λ is generated by a universal Λ-family
{sλ}. We write pv := sv for v ∈ Λ0.



Representations of graph algebras

There is a very well-developed theory of representations of
Cuntz-Krieger C ∗-algebras associated to directed graphs (where
k = 1) on Hilbert spaces. To list just a few names, O. Bratteli and
P. Jorgensen, K. Kawamura, D. Dutkay and P. Jorgensen, and M.
Marcolli and A. Paolucci have studied representations of
Cuntz-Krieger algebras on a variety of Hilbert spaces. In particular,
in these papers the Perron-Frobenius theory has been used on the
incidence matrices involved to construct measures giving interesting
Hilbert spaces on which to represent these algebras.

In addition, M. Marcolli and A. Paolucci [MP] represented
Cuntz-Krieger algebras on Hilbert spaces associated to fractals,
extending results of A. Jonnson [Jo] to construct a wavelet family
associated to particular representations of these C ∗-algebras.



The Infinite Path Space for a k-graph Λ

In 2015, A. an Huef, M. Laca, I. Raeburn, and A. Sims [aHLRS2]
used the Perron-Frobenius theory associated to incidence matrices
for finite higher-rank graphs to construct a probability measure M
on the so-called infinite path space Λ∞ associated to Λ, and used
this measure in the study of the abelian core of C ∗(Λ) as well as to
construct KMS states associated to the graph C ∗-algebras.

Farsi, Gillaspy, Kang, and P. represented C ∗(Λ) on L2(Λ∞,M), so
as to generalize the construction of “wavelets".



The Infinite Path Space of Λ, continued
Recall the basic example of a k-graph:

Ωk := {(p, q) ∈ Nk × Nk : p ≤ q}.

Recall that with composition defined by (p, q)(q,m) = (p,m) and
degree map given by d(p, q) = q − p, Ωk is a k-graph with no
sources.

Definition 2
Let Λ be a finite k-graph with no sources. An infinite path in a
k-graph Λ is a k-graph morphism x : Ωk → Λ. We write Λ∞ for the
collection of all infinite paths and call it the infinite path space of
Λ. For each p ∈ Nk , we define σp : Λ∞ → Λ∞ by
σp(x)(m, n) = x(m + p, n + p) for x ∈ Λ∞. For λ ∈ Λ we define
Z (λ) = {x ∈ Λ∞ : x(0, d(λ)) = λ} and we call it a cylinder set.
The cylinder sets {Z (λ)} are a basis for the topology on Λ∞. Note
that since Λ is finite, Λ∞ is compact.



The Perron-Frobenius Measure on Λ∞

Let Λ be a strongly connected k-graph with vertex matrices
A1, . . . ,Ak . Because Λ is strongly connected, these matrices will be
irreducible and nonnegative. Because of the factorization property
of k-graphs, these matrices will commute.

The Perron-Frobenius theory shows that there is a unique common
nonnegative unimodular Perron-Frobenius eigenvector xΛ for the
vertex matrices Ai . We will call xΛ the Perron-Frobenius
eigenvector of the k-graph Λ.

Eigenvalues associated to xΛ are called the Perron-Frobenius
eigenvalues. The Perron-Frobenius eigenvalue for Ai is the spectral
radius ρ(Ai ) of Ai .



The Measure on Λ∞, continued

The following definition was originally given in Proposition 8.1 of
[aHLRS2].

Definition 3
Let Λ be a strongly connected finite k-graph with the vertex
matrices Ai . Define a measure M on cylinder sets of Λ∞ by

M(Z (λ)) = ρ(Λ)−d(λ)xΛ
s(λ) for all λ ∈ Λ, (1)

where ρ(Λ) = (ρ(A1), . . . , ρ(Ak)) and xΛ is the unimodular
Perron-Frobenius eigenvector of Λ described in the previous slide.
We call M the Perron-Frobenius measure on the infinite path space
Λ∞.



The representation of C ∗(Λ) on L2(Λ∞,M)

To construct the representation of the graph algebra C ∗(Λ) on
L2(Λ∞,M) we need to construct partial isometries satisfying the
CK conditions.



More on the infinite path space

Notation: Let Λ be a strongly connected finite k-graph. Define for
each λ ∈ Λ a “prefixing map" σλ : Z (s(λ)) ⊂ Λ∞ → Z (λ) ⊂ Λ∞

by σλ(x) = λx , and define “coding maps" {σm : Λ∞ → Λ∞}m∈Nk

by σm(x) = x(m,∞). (Note the “prefixing maps" insert a “shape",
and the “coding maps" delete a “shape" from a path.)
Then
(a) For each m ∈ Nk , the family {σλ : d(λ) = m} and σm satisfy

σm(σλ(x)) = x , x ∈ Z (λ).

(b) If v ∈ Λ0, then σv = id , and M(Z (v)) > 0.
(c) Let Rλ = σλ(Z (λ)). For each λ ∈ Λ, ν ∈ s(λ)Λ, we have

Rν ⊆ Z (λ) (up to a set of measure 0), and
σλσν = σλν a.e.

(d) The coding maps satisfy σm ◦ σn = σm+n for any m, n ∈ Nk .



The representation of C ∗(Λ) on L2(Λ∞,M) :

We say that a k-graph Λ is aperiodic if for each v ∈ Λ0, there exists
x ∈ Z (v) such that for all m 6= n ∈ Nk , we have σm(x) 6= σn(x).

Theorem 4 (FGKP)
Let Λ be a finite k-graph with no sources, and let the prefixing
maps {σλ : Z (s(λ)) ⊂ Λ∞ → Z (λ) ⊂ Λ∞} and coding maps
{σm : Λ∞ → Λ∞}m∈Nk be defined on the measure space (Λ∞,M)
as previously. For each λ ∈ Λ, define Sλ ∈ B(L2(Λ∞,M)) by

Sλξ(x) = χZ(λ)(x)ρ(Λ)d(λ)/2ξ(σd(λ)(x)).

Then the operators {Sλ}λ∈Λ generate a representation of C ∗(Λ).
If Λ is aperiodic then this representation is faithful.



Example of this representation

.f1 ef2

In this example, we set our factorization rules to be:

f2e = ef1 and f1e = ef2

By these factorization rules, we see that if a particular infinite path
in x ∈ Λ∞ has infinitely many of both {e} and {fi}2i=1, it can be
chosen to be of the form

efi1efi2efi3 · · · .
The two incidence matrices corresponding to the two colorad of
edges and one vertex are 1×1 and we have (A1) = (1), (A2) = (2).
Therefore the Perron Frobenius-measure on cylinder sets is:

M(Z (e)) = 1, M(Z (efi )) = 1/2, i = 1, 2, etc.



Representation example, continued

Using the Theorem, we will find isometries Se , Sf1 , and Sf2 on
L2(Λ∞,M) satisfying

S∗e Se = S∗f1Sf1 = S∗f2Sf2 = Id,

SeS∗e = Sf1S
∗
f1 + Sf2S

∗
f2 = Id.

and finally
SeSf1 = Sf2Se , SeSf2 = Sf1Se .

So, for ξ ∈ L2(Λ∞,M) and x ≡ efi1efi2efi3 · · · ,



Representation example, conclusion

we calculate

Se(ξ)(x) = χZ(e)(x)11/220/2ξ(σ(1,0)x) = ξ(efi1+1efi2+1efi3+1 · · · );

where the addition in the subscripts of f is taken modulo 2, and

Sf1(ξ)(x) = 21/2χZ(f1)(x)ξ(σ(0,1)x) = 21/2χZ(f1)(x)ξ(efi2+1efi3+1 · · · );

Sf2(ξ)(x) = χZ(f2)(x)10/221/2ξ(σ(0,1)x) = 21/2χZ(f2)(x)ξ(efi2+1efi3+1 · · · ))

and verify that the appropriate CK relations are satisfied.



Wavelets associated to the representations of C ∗(Λ)

We now follow generalize a construction of M. Marcolli and A.
Paolucci for Cuntz-Krieger C ∗-algebras (these are C ∗-algebras
associated to directed graphs, k = 1.) Their work in turn was
motivated by work of A. Jonnson. In the process, we construct an
orthogonal decomposition of L2(Λ∞,M), which we call a wavelet
decomposition. We have extended the construction to obtain
wavelets corresponding to an arbitrary positive degree, thus
answering a question posed by Aidan Sims.



Wavelets associated to the representations of C ∗(Λ), continued

To construct orthogonal subspaces of L2(Λ∞,M), we first set the
initial space V0,λ equal to the subspace spanned by the functions
{Θv : v ∈ Λ0}. Note that the functions {Θv : v ∈ Λ0} form an
orthogonal set in L2(Λ∞,M), whose span includes the constant
functions on Λ∞.

To construct the wavelet subspace W0,Λ, fix v ∈ Λ0, and fix
(j1, j2, · · · , jk) ∈ [N+]k . Let

Dv = {λ : d(λ) = (j1, . . . , jk) and r(λ) = v},

and write dv for |Dv | (since Λ is a finite k-graph, dv <∞).



Wavelets associated to the representations of C ∗(Λ), continued

Define an inner product on Cdv by

〈~v , ~w〉 =
∑
λ∈Dv

vλwλρ(Λ)(−j1,...,−jk)xΛ
s(λ) (2)

and let {cm,v}dv−1
m=1 be an orthonormal basis for the orthogonal

complement of (1, . . . , 1) ∈ CDv with respect to this inner product.

For each pair (m, v) with 1 ≤ m ≤ dv − 1 and v a vertex in Λ0,
define

f m,v =
∑
λ∈Dv

cm,v
λ Θλ.



Wavelets associated to the representations of C ∗(Λ), continued

By the definition of M on Λ∞, since the vectors cm,v are
orthogonal to (1, · · · , 1) in the inner product (2), we have∫

Λ∞
f m,v dM = 0.

We also easily check∫
Λ∞

f m,v f m′,v ′ dM = δv ,v ′δm,m′ ,

so that {f m,v} are an orthonormal set in L2(Λ∞,M).

Following Marcolli and Paolucci, we define the wavelet subspace

W0,Λ := span{f m,v : v ∈ Λ0, 1 ≤ m ≤ dv − 1}.



Wavelets associated to the representations of C ∗(Λ), main theorem

Theorem 5 (FGKP)
Let Λ be a strongly connected finite k-graph. For each fixed
j ∈ N+ and v ∈ Λ0, let
Cj ,v := {λ ∈ Λ : s(λ) = v , d(λ) = (j · j1, j · j2, . . . , j · jk)}, and let
Sλ be the operator on L2(Λ∞,M) described in Theorem 4. Then
{Sλf m,v : v ∈ Λ0, λ ∈ Cj ,v , 1 ≤ m ≤ dv − 1} is an orthonormal
set, so that for λ ∈ Cj ,v , µ ∈ Ci ,v ′ with 0 < i < j , we have∫

Λ∞ Sλf m,vSµf m′,v ′ dM = 0 ∀ m,m′.
Thus, defining
Wj ,Λ := span{Sλf m,v : v ∈ Λ0, λ ∈ Cj ,v , 1 ≤ m ≤ dv − 1} for
j ≥ 1, we obtain an orthogonal decomposition

L2(Λ∞,M) = V0 ⊕
⊕∞

j=0Wj ,Λ.



Example of wavelet decomposition for 2-graph algebra:

Example 6
We return to the case where Λ has one vertex and three edges (two
blue f1 and f2 and one red, e).
Let M be the Perron-Frobenius measure on Λ∞, let φ be the
constant function 1 on Λ∞, let (j1, j2) = (1, 1), and let

ψ = χZ(ef1) − χZ(ef2).

By using the theorem or direct calculation we verify that

{φ} ∪ ∪∞j=0{Sλ(ψ) : λ ∈ Λ, d(λ) = (j , j)}

is an orthonormal basis for L2(Λ∞).
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