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Orbigroupoids

Topological Groupoids

Let Top be a category of ‘nice’ topological spaces. (‘Nice’ means:
compactly generated, locally compact, Hausdorff, paracompact,
generalized topological manifold.)
A topological groupoid is an internal groupoid in Top,

G1 ×G0 G1
m // G1

inv // G1

s //

t
// G0uoo
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Orbigroupoids

Etale Groupoids

A topological groupoid G is called étale when its structure maps
are local homeomorphisms.
For any x ∈ G0, its isotropy group Gx is defined as
(s, t)−1(x , x) = s−1(x) ∩ t−1(x) ⊆ G1.
When the groupoid is étale all isotropy groups are discrete.
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Orbigroupoids

Proper Groupoids

A topological groupoid G is called proper when the diagonal,

(s, t) : G1 → G0 × G0,

is a proper map (i.e., closed with compact fibers).
The isotropy groups in a proper groupoid are all compact.
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Orbigroupoids

Orbigroupoids

Definition
1 A topological groupoid is an orbigroupoid if it is both étale and

proper.
2 The quotient space,

G1
s //

t
// G0 // // XG

is also called the underlying space of the orbispace.
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Orbigroupoids

Examples
A Cone of Order 3

objects

id

2/3

1/3 morphisms

This is a translation groupoid, Z/3 n D.
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Orbigroupoids

Examples
The Unit Interval

morphisms

objects
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Orbigroupoids

Examples
The Unit Interval again

morphisms

objects
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Orbigroupoids

Examples
The Teardrop Groupoid

objects
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1/3

2/3

id

id

3X

morphisms
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Orbigroupoids

Examples: The Triangular Billiard Groupoid T

Objects:

Quotient

e

σ

σρ

σρ2

(glueing via natural transformation)

Billiard groupoid

3 3 3*      *      *

3 3 3*      *      *
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Orbigroupoids

Examples
The Z/3 Circles

e

r

r 2

e

s=t=
projection

s=t=
projection
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Orbigroupoids

Translation Neighbourhoods

Definition
Let G be an étale and proper topological groupoid.

1 For a point x ∈ G0, a neighbourhood Ux ⊆ G0 is a translation
neighbourhood if (s, t)−1(Ux × Ux ) � Gx × Ux .

2 For a point g ∈ G1, a neighbourhood Ug ⊆ G1 is a translation
neighbourhood if s|Ug and t |Ug are both homeomorphisms
whose images are translation neighbourhoods.

Lemma (Moerdijk-P, 1997)
When G is étale and proper, the translation neighbourhoods form a
basis for the topology of G0 and G1.

Remark
These translation neighbourhoods can be made into an orbi-atlas for
XG, but that is the topic of Laura’s talk.
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Groupoid Maps

Groupoid Homomorphisms

A groupoid homomorphism f : G → H is an internal functor in
Top, i.e., a pair of continuous functions f0 : G0 → H0 and
f1 : G1 → H1 making the following diagram ‘commute’:

G1 ×G0 G1

f1×f1
��

m // G1

f1
��

s //

t
// G0uoo

f0
��

H1 ×H0 H1
m // H1

s //

t
// H0uoo

There is a space of groupoid homomorphisms

GMap(G,H)0 ⊂ Map(G0,H0) ×Map(G1,H1)
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Groupoid Maps

Natural 2-Cells

A 2-cell
α : f ⇒ f ′ : G⇒ H

is given by an internal natural transformation, i.e., a continuous
function

α : G0 → H1

such that
s ◦ α = f0 and t ◦ α = f ′0;
(naturality) the following square commutes in H for each g ∈ G1,

f0(sg)
f1(g) //

α(sg)
��

f0(tg)

α(tg)
��

f ′0(sg)
f ′1(tg)

// f ′0(tg)
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Groupoid Maps

The Groupoid GMap(G,H)

There is a space of natural transformations

GMap(G,H)1 ⊂ GMap(G,H)0 ×Map(G0,H1) ×GMap(G,H)0.

The obvious structure maps make GMap(G,H)1 and
GMap(G,H)0 the space of arrows and the space of objects
(respectively) for a topological groupoid GMap(G,H),

GMap(G,H)1

s //

t
// GMap(G,H)0uoo
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Groupoid Maps

Examples

If f , f ′ : G⇒ H do not induce the same maps on the underlying
quotient spaces, there is no 2-cell from f to f ′.
If G = G n X , a translation groupoid, and I = I id then 2-cells
α : f ⇒ f ′ : I⇒ G correspond to elements g ∈ G such that
g · f = f ′.
It is possible that f , f ′ : G⇒ H induce the same map on the
quotient spaces without being related by a 2-cell.
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Groupoid Maps

We do not have enough maps

The following two representations of the unit interval,

morphisms

objects

morphisms

objects

are not isomorphic through groupoid homomorphisms.
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Generalized Maps

Essential Equivalences

A morphism f : G → H is an essential equivalence when it is
essentially surjective and fully faithful.
It is essentially surjective when G0 ×H0 H1 −→ H0 in

G0 ×H0 H1

��

// H1

s
��

t // H0

G0 f0
// H0

is an open surjection.

obj
������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������

�������
�������
�������
������� HGobj

f may not be onto the objects of H , but every object in H0 is
isomorphic to an object in the image of G0.
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Generalized Maps

Essential Equivalences

The morphism f : G → H is fully faithful when

G1
φ //

(s,t)
��

H1

(s,t)
��

G0 ×G0
φ×φ // H0 × H0

is a pullback,

HG

The local isotropy structure is preserved.
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Generalized Maps

Morita Equivalence

Two orbigroupoids G and H are called Morita equivalent if there
exists a third orbigroupoid K with essential equivalences

G K
ϕoo ψ // H .

This is an equivalence relation on groupoids, because essential
equivalences of topological groupoids are stable under weak
pullbacks (iso-comma-squares).
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Generalized Maps

Generalized Maps and 2-Cells Between Orbigroupoids

Generalized maps or orbimaps are spans

G
υ
←− K

ϕ
−→ H

where υ is an essential equivalence;
A 2-cell between two generalized maps is an equivalence class of
diagrams of the form

K
υ

xxrrrrrrrrr ϕ

&&MMMMMMMM

G α1⇓ L

ν1

OO

ν2��

α2⇓ H

K ′
υ′

ffLLLLLLLL ϕ′

88qqqqqqqq

where υν1 is an essential equivalence.
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The Mapping Space Groupoid Essential Covering Maps

Small Hom-Groupoids?

We want to show that the hom-groupoids of generalized maps and
2-cells between them carry a natural topology that makes them
orbispace groupoids.
Our first obstacle is the fact that the hom-groupoids as just
described are not small.
So we will introduce small subgroupoids that are Morita equivalent
to the larger ones.
This requires the notion of an essential covering map.
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The Mapping Space Groupoid Essential Covering Maps

Essential Coverings

A collection U of open subsets of G0 is an essential covering of
G0 if the map (jU)0 :

∐
U∈U U → G0 is essentially surjective: tπ2 is

an open surjection in

(
∐

U∈U U) ×G0 G1
π2 //

π1

��

G1

s
��

t // G0

∐
U∈U U

(jU)0

// G0 .

Note that an essential covering does not necessarily cover all of
G0, but it meets every orbit.
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The Mapping Space Groupoid Essential Covering Maps

Essential Covering Maps

Any essential covering U gives rise to a groupoid G∗(U) with a
groupoid homomorphism jU : G∗(U)→ G, defined by:

G∗(U)0 =
∐

U∈U U;
(jU)0 : G∗(U)0 → G0 is defined by inclusions on the connected
components;
G∗(U)1 is defined as the pullback,

G(U)1

(s,t)
��

(jU)1 // G1

(s,t)
��∐

U∈U U ×
∐

U∈U U
(jU)0×(jU)0

// G0 × G0.

This makes the map jU : G∗(U)→ G an essentially equivalence.
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The Mapping Space Groupoid Essential Covering Maps

Essential Covering Maps

Definition

An essential equivalence w : H → G which is isomorphic to one of the
form jU : G∗(U)→ G as just described is called an essential covering
map,

H

w
��>

>>
>>

>>
>

ϕ

∼
//

α
�

G∗(U)

jU||yy
yy

yy
yy

y

G .
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The Mapping Space Groupoid Essential Covering Maps

Properties of Essential Covering Maps

For any groupoid G, there is a set of essential covering maps with
codomain G.

For each essential equivalence H w //G of orbigroupoids there is
an essential covering U of G such that jU factors through w ,

G∗(U)
jU

''OOOOOOOOOOOOO

ε

��
H w

//
α

G
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The Mapping Space Groupoid Essential Covering Maps

Essential Coverings and Generalized Maps, I

Lemma
Given two orbigroupoids G and H , each orbimap

G Kw
oo

ϕ
// H

is isomorphic to one of the form,

G G∗(U)
jU

oo
ψ

// H

G∗(U)
jU

wwnnnnnnnnnn ψ=ϕε

''PPPPPPPPPP

G α G∗(U)

ε
��

� H

K

w

hhPPPPPPPPPPPP ϕ

66nnnnnnnnnnnn
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The Mapping Space Groupoid Essential Covering Maps

Essential Coverings and Generalized Maps, II

Any 2-cell from
G G∗(U)

jU
oo

ϕ
// H

to
G G∗(V)

jV
oo

ψ
// H

can be represented by a diagram of the form

G∗(U)
jU

ttiiiiiiiiiiiiiii ϕ

**UUUUUUUUUUUUUUU

G α G∗(W)

jW
U

OO

jW
V��

β H

G∗(V)
jV

jjUUUUUUUUUUUUUUU ψ

44iiiiiiiiiiiiiii

The essential coveringW can be viewed as an essential refinement of
U and V.
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The Mapping Space Groupoid Essential Covering Maps

The orbi mapping groupoid OMap(G,H)

Let OMap(G,H)0 be the space generalized maps from G to H .
This is topologized as the following coproduct of spaces,

OMap(G,H) =
∐

(U,jU)

GMap(G∗(U),H)0

The space OMap(G,H)1 is the space of equivalence classes of
2-cell diagrams, so it can be viewed as a quotient of a subspace of
a product of mapping spaces.
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The Mapping Space Groupoid Properties of Mapping Groupoids

Pseudo Colimits

Theorem (P-Scull)

For any two orbigroupoids G and H , the groupoid OMap(G,H) of
generalized maps and 2-cells between them, is Morita equivalent to
the pseudo colimit

lim
→

(U,jU)

GMap(G∗(U),H).

This colimit is taken over the diagram of essential coverings of G with
essential refinements between them,

G∗(U)

jU ""EE
EE

EE
EE

E

jU
V //

α

G∗(V)

jV||yy
yy

yy
yy

y

G
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The Mapping Space Groupoid Properties of Mapping Groupoids

Generalized 2-Cells

Given a common essential refinement, G∗(W)
jU
W //

jV
W

��
α�

G∗(U)

jU
��

G∗(V)
jV

// G

every

generalized 2-cell between any pair of orbimaps,

G G∗(U)
jUoo ϕ // H and G G∗(V)

jVoo ψ // H

can be represented by a diagram of the form

G∗(U)

uukkkkkkkkkkkkk

))SSSSSSSSSSSSS

G α G∗(W)

OO

��

β H

G∗(V)

iiSSSSSSSSSSSSS

55kkkkkkkkkkkkk
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The Mapping Space Groupoid Properties of Mapping Groupoids

The Space of Arrows for OMap(G,H)

Let G and H be orbigroupoids. Then the space of arrows of the
mapping groupoid for orbimaps can be described as follows:

For every pair of essential coverings Ui , Uj of G, choose an
essential common refinement,

G∗(Wij)
j
Ui
Wij //

j
Uj
Wij ��

αij�

G∗(Ui)

jUi
��

G∗(Uj) jUj

// G

OMap(G,H)1 can be viewed as∐
i ,j

(jUi
Wij

, jUj

Wij
)∗GMap(G∗(Wij),H)1 ⊂∐

i ,j

GMap(G∗(Ui),H)0 ×Map(G∗(Wij)0,H1) ×GMap(G∗(Uj),H)0
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The Mapping Space Groupoid Properties of Mapping Groupoids

Example: The Z/2-points of the triangular billiard

Let ∗Z/2 = Z/2 n {∗}. We will calculate OMap(∗Z/2,T).
No essential coverings are needed in this case:
OMap(∗Z/2,T) = GMap(∗Z/2,T).
Here are the options for maps from ∗Z/2 to the triangular billiard
groupoid T,

Objects:

Quotient

σ

σρ

σ

2

(glueing via natural transformation)

          
*  Morphisms in  Map(         , Billiard) 2

          
* 
           
* 

           
* 

           
* 

           
* 

Identitiy0

1

h

α? 

α : g        h      

Yes!!

boils down to conjugacy

           
* 

           
* 

           
*           
* 

           
* 

           
* 

0

1            
*           
* 
           
* 

           
* 

           
* 

           
* 

0

1

A

A
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The Mapping Space Groupoid Properties of Mapping Groupoids

Example: The Z/2-points of the triangular billiard

The space of objects becomes

Quotient
(glueing via natural transformation)

Some of the natural transformations
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The Mapping Space Groupoid Properties of Mapping Groupoids

Example: The Z/2-points of the triangular billiard

The final result is that we obtain a copy of the original orbigroupoid
T together with a copy of the (trivial) Z/2-circle, S1

Z/2,
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The Mapping Space Groupoid Properties of Mapping Groupoids

Example: The Z/6-points of the triangular billiard

The space of objects,

Quotient
(glueing via natural transformation)

The resulting orbispace,
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The Mapping Space Groupoid Properties of Mapping Groupoids

The Inertia Groupoid

Proposition
For any orbispace with a compact underlying space and groupoid
representation G, there is an integer n such that
Λ(G) = OMap(∗Z/n,G) = GMap(∗Z/n,G).
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The Mapping Space Groupoid Properties of Mapping Groupoids

Results So Far

Theorem (P-Scull)
For an orbit compact orbigroupoid G and any orbigroupoid H the
groupoid OMap(G,H) is again étale and proper;
This construction of OMap(G,H) is functorial in G and H for
generalized maps;
A Morita equivalence G ← K → G′ induces an isomorphism

OMap(G,H) � OMap(G′,H);

A Morita equivalence H ← K → H ′ induces an isomorphism

OMap(G,H) � OMap(G,H ′).
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