Duality of gerbes on orbifolds

Xiang Tang

Memphis, TN, October 18th, 2015

In this talk, we explain a duality conjecture about gerbes on orbifolds using noncommutative geometry. The "Mackey machine" of induced representations provides a powerful approach to study this conjecture.

This is joint work with Ilya Shapiro and Hsian-hua Tseng.

Plan:

- 1. Group extensions
- 2. Duality of gerbes

Part I: Group Extension

We review the Mackey machine on finite groups. Such an idea of induced representations goes back to Frobenius and Schur.

G Extension of a finite group Q

Consider an exact sequence of finite groups

$$1 \to G \xrightarrow{i} H \xrightarrow{j} Q \to 1.$$
 (1)

Choose a section $s: Q \to H$. As G is normal in H, the group H acts on G by conjugation. The section s defines a Q "action" α on G by

$$\alpha(q)(g) = s(q)gs(q)^{-1}.$$

Generally this is not a real group action because $\alpha(q_1) \circ \alpha(q_2) \neq \alpha(q_1q_2)$.

Define $c: Q \times Q \to G$ by $c(q_1, q_2) = s(q_1)s(q_2)s(q_1q_2)^{-1}$. The the failure of α being a group action can be computed by

$$\alpha(q_1) \circ \alpha(q_2) = Ad_{c(q_1,q_2)} \circ \alpha(q_1q_2).$$

Mackey machine I

Mackey machine provides an algorithm to determine H representations in terms of representations of G and Q.

Let V be a representation of H. The group G as a normal subgroup of H also acts on V. As G is finite, the space V as a G representation is naturally decomposed into a direct sum of irreducible G representations, i.e.

$$V = \bigoplus_{\rho \in \widehat{G}} V_{\rho},\tag{2}$$

where \hat{G} is the set of isomorphism classes of irreducible representations of G and V_{ρ} a subspace of V is a direct sum of Gsub-representations of V which are isomorphic to ρ .

Mackey machine II

As G is a normal subgroup of H, the group H acts on G by conjugation. Accordingly, H acts on \hat{G} the set of isomorphism classes of G irreducible representations. This induces a Q = H/G action on \hat{G} as G acts on \hat{G} trivially.

Let χ_{ρ} be the orthogonal projection from V to V_{ρ} . Then we have

$$T_h \chi_\rho T_h^{-1} = \chi_{h(\rho)}.$$

If V is an H irreducible representation, then the elements in \hat{G} appearing in V forms an orbit of the Q action on \hat{G} .

Let θ be an orbit of the Q action on \hat{G} . Choose $\rho \in \theta$, and let Q_{θ} be the stabilizer subgroup of ρ . Irreducible representations of H associated to θ are one to one correspondent to τ_{θ} -twisted irreducible representations of the group Q_{θ} .

U(1) valued cocycle

Choose $\rho \in \theta$. The group Q_{θ} keeps ρ invariant, i.e. $q(\rho) = \rho$, for $q \in Q_{\theta}$.

Write V_{ρ} as $E_{\rho} \otimes F_{\rho}$, where E_{ρ} is a *G* irreducible representation of the isomorphism class ρ . Since $T_q \chi_{\rho} T_q^{-1} = \chi_{q(\rho)} = \chi_{\rho}$ for $q \in Q_{\theta}$, the group Q_{θ} preserves V_{ρ} , i.e. $T_q(V_{\rho}) \subset V_{\rho}$ for $q \in Q_{\theta}$.

As the *G* action on E_{ρ} is irreducible, we have that T_q acts on $V_{\rho} = E_{\rho} \otimes F_{\rho}$ diagonally, i.e. $T_q = E_q \otimes F_q$ for $q \in Q_{\theta}$. It is easy to check that $c(q_1, q_2)E_{s(q_1q_2)}E_{q_2}^{-1}E_{q_1}^{-1}$ commutes with the *G* action on E_{ρ} . Therefore, $\tau_{\theta}(q_1, q_2) = c(q_1, q_2)E_{s(q_1q_2)}E_{q_2}^{-1}E_{q_1}^{-1}$ is an element of U(1).

The group Q_{θ} acts on F_{ρ} with cocycle τ_{θ} .

Duality suggested by Mackey machine

The Mackey machine suggests the following Morita equivalence result.

The group algebra $\mathbb{C}H$ is Morita equivalent to the algebra

$$\bigoplus_{\theta} \mathbb{C}_{\tau_{\theta}} Q_{\theta}.$$

Namely, the category of H modules is isomorphic to the category of $\bigoplus_{A} \mathbb{C}_{\tau_{\theta}} Q_{\theta}$ modules.

Geometrically, this suggests that there is some duality between the group H and the action groupoid $\hat{G} \rtimes Q$ with a U(1)-valued groupoid 2-cohomology class $[\tau]$.

A toy example

When Q is the trivial group, then H = G. Our Morita equivalence result states that the group algebra $\mathbb{C}G$ is Morita equivalent to $C(\hat{G})$, the algebra of functions on \hat{G} .

This is a corollary of the classical result that $\mathbb{C}G$ is isomorphic to

$$\oplus_{\rho \in \widehat{G}} \operatorname{End} E_{\rho}.$$
 (3)

In particular, if G is abelian, then $\mathbb{C}G$ is isomorphic to $C(\hat{G})$ via the Fourier transform.

Our discussion today is a generalization of the classical "Pontryagin duality" on abelian groups to gerbes over orbifolds.

Part II: Duality of gerbes

We explain the duality conjecture of gerbes on orbifolds, and present a number of mathematical results realizing such a principle of duality.

Global quotient

Let H act on a smooth manifold M such that G acts on M trivially. Accordingly, the group Q = H/G acts on M. We have the following exact sequence of action groupoids,

$$M \times G \to M \rtimes H \to M \rtimes Q. \tag{4}$$

As is explained before, Q acts on \hat{G} , the set of isomorphism classes of G irreducible representations. Define a new groupoid $\mathfrak{Q} = (\hat{G} \times M) \rtimes Q$. The cocycle $[\tau]$ defines a groupoid cocycle $[\tau]$ on \mathfrak{Q} .

The Mackey machine suggests that there is a duality between the groupoid extension (4) and the groupoid \mathfrak{Q} with the cocycle [τ]. This suggests a general duality about gerbes on orbifolds.

Duality conjecture

Consider the *G*-gerbe X = [M/H] and the orbifold $Y = [\hat{G} \times M/Q]$ with the U(1) valued class $[\tau]$.

Hellerman, Henriques, Pantev, and Sharpe conjectured that the conformal field theory on the gerbe X is same as the conformal field theory on Y with the U(1)-gerbe defined by $[\tau]$.

Our viewpoint toward this conjecture is that it suggests the following principle:

Geometry/topology of the G-gerbe X is equivalent to geometry/topology of Y twisted by $[\tau]$.

Morita equivalence

The following results are outcomes of the Mackey machine. **Theorem 1** The crossed product algebra $C^{\infty}(M) \rtimes H$ is Morita equivalent to the τ -twisted crossed product $C^{\infty}(\widehat{G} \times M) \rtimes_{\tau} Q$.

Furthermore, if M is equipped with a K invariant symplectic form, then we consider a K invariant deformation quantization $\mathcal{A}^{((\hbar))}(M)$ of the algebra of smooth functions on M.

Theorem 2 The crossed product algebra $\mathcal{A}^{((\hbar))}(M) \rtimes H$ is Morita equivalent to the τ twisted crossed product algebra $\mathcal{A}^{((\hbar))}(\widehat{G} \times M) \rtimes_{\tau} Q$.

Hochschild Cohomology

The above Morita equivalence between algebras imply that their corresponding Hochschild and cyclic cohomology groups are isomorphic.

The Hochschild cohomology of $\mathcal{A}^{((\hbar))}(M) \rtimes H$ isomorphic to the cohomology of the space $\bigsqcup_{\leq h >} M^h/C(h)$.

The Hochschild cohomology of $\mathcal{A}^{((\hbar))}(\widehat{G} \times M) \rtimes_{\tau} Q$ is computed by τ twisted de Rham cohomology on $\bigsqcup_{\leq q >} (\widehat{G} \times M)^q / C(q)$.

Theorem 3 The cohomology rings of the orbifolds $\bigsqcup_{<h>M^h}/C(h)$ and $\bigsqcup_{<q>}(\hat{G} \times M)^q/C(q)$ are isomorphic.

 $H^{\bullet}(\bigsqcup_{<h>} M^{h}/C(h);\mathbb{C}) \simeq H^{\bullet}(\bigsqcup_{<q>} (\widehat{G} \times M)^{q}/C(q),\tau;\mathbb{C})$

Quantum Cohomology

Using the theorem about the isomorphism between the cohomology rings, we can prove the following theorem about quantum cohomology and Gromov-Witten invariants.

Theorem 4 When X satisfies one of the following properties,

- X is a G-gerbe over BQ,
- X is a G-gerbe over a manifold with a trivial band,
- X is a toric gerbe over a toric orbifold,

the Gromov-Witten theories of X and Y are isomorphic.

We are working on the following theorem.

When X is a G-gerbe over an orbifold with a trivial band, the Gromov-Witten theories of X and Y are isomorphic.

Remarks

1. Following from the Morita equivalence, we have an isomorphism of K-groups between the two orbifolds.

2. Consider categories of sheaves on X = [M/H] and $[\hat{G} \times M/Q]$. The category of sheaves on [M/H] is isomorphic to the category of τ -twisted sheaves on $Y = [\hat{G} \times M/Q]$.

3. If t is an S^1 -valued 2-cocycle on G, let G_t be the central extension of G by S^1 via t. We can generalize our results to the extension

$$1 \longrightarrow G_{\mathfrak{t}} \longrightarrow H_{\mathfrak{t}} \longrightarrow Q \longrightarrow 1.$$

Thank you!